
Option Pricing in Illiquid Markets with Jumps

José Manuel Teixeira dos Santos Cruz

Supervisors:
Daniel Ševčovič
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3.2 Feynman-Kač formula for PIDEs . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Option prices as classical solutions of PIDEs . . . . . . . . . . . . . . . . 25

3.3.1 European Options . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 Barrier Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Option Pricing using Fourier Transform methods . . . . . . . . . . . . . 37

3.5 Modelling the feedback effects with jump process . . . . . . . . . . . . . 41

3.6 Existence of solutions in Bessel potential spaces . . . . . . . . . . . . . . 47

3.6.1 Existence results for the linear PIDE . . . . . . . . . . . . . . . . 48

3.6.1.1 The Black-Scholes PIDE model . . . . . . . . . . . . . . 53

3.6.2 Existence results for nonlinear PIDE option pricing models . . . . 58

4 Numerical Methods 63

4.1 Finite Difference Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Implicit-explicit numerical discretization scheme for the Classical
PIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ii



CONTENTS iii

4.1.2 Implicit-explicit numerical discretization scheme for the nonlinear
PIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.3 Numerical scheme for solving nonlinear PIDEs with finite activity
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Chapter 1

Introduction

We know that the Black-Scholes model is the most used in financial markets because
one of the main reasons for using it is the existence of an analytical formula to price
European options. However, evidence from the stock market suggests that this model
is not the most realistic one, since it assumes that the market is liquid, complete and
without transaction costs.

It is well known that the sample paths of a Brownian motion are continuous, but the
stock price of a typical company suffers sudden jumps on an intraday scale, making the
price trajectories discontinuous. In the classical Black-Scholes model the logarithm of the
price process has normal distribution. However the empirical distribution of stock returns
exhibits fat tails. Finally, when we calibrate the theoretical prices to the market prices,
we realize that the implied volatility is not constant as a function of strike neither as a
function of time to maturity, contradicting this way the prediction of the Black-Scholes
model. Several alternatives have been proposed in the literature for the generalization of
this model. The models with jumps can, at least in part, solve the problems inherent to
the Black-Scholes model. The jump models have also an important role in the options
market. While in the Black-Scholes model the market is complete, implying that every
payoff can be exactly replicated, in jump models there is no perfect hedge and this way
the options are not redundant.

We also relax the assumption of liquid market. Investors and risk managers have
realized that financial models based upon on the assumption that an investor can trade
large amounts of an asset without affecting its price is no longer true in markets that are
not liquid. Market Illiquidity has been studied in the literature in [49], [36], [70], [78],
[37], [73]. The first major contribution was done by Robert Jarrow, in 1994 who studied
the market manipulation strategies that may arise in illiquid markets. This paper also
studies option pricing theory, in discrete time, when there is a large trader. The pricing
argument used here was a condition to ensure that no market manipulation strategy is
used by the large trader and the large trader’s optimality conditions, thus replacing the
usual free-arbitrage argument.

Then, Frey in 1998 extended Jarrow’s analysis to the continuous time case. In this
paper is shown a result of existence and uniqueness of solution of a nonlinear partial
differential equation satisfied by the large trader’s hedging strategy. In the same year,
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2 CHAPTER 1. INTRODUCTION

Platten and Schweizer proposed an explanation for the smile and skewness for the implied
volatilities and show that hedging strategies followed by large traders can lead to option
price bias.

In 1998, Sircar and Papanicolaou present a model in which the derivative security
price is characterized by a nonlinear partial differential equation that becomes the Black-
Scholes equation when there is no feedback. When the programme traders are a small
fraction of the economy the nonlinear partial differential equation is analysed by peturba-
tion methods using numerical and analytical methods. This equation is derived using an
argument similar to the one used in the derivation of the classical Black-Scholes equation.
The findings are that this model also predict increased implied volatilities as in Platten
and Schweizer.

In 2000, Schonbucher and Willmott analyse also the feedback effects from the presence
of hedging strategies. Also a nonlinear partial differential equation is derived for an option
replication strategy and these effects are studied for the case of a Put option. The effects
are more pronounced in markets with low liquidity and can induce discontinuities in the
price process.

So this leads us to consider also a jump process into the models already used in the
literature.

Jump models have been studied for example in [60], [55], [14], [21], [31], [26], [65] and
[21] but none of these papers takes into account the market’s illiquidity. So it seems to be
a good approach to extend the models that study market’s illiquidity to the case where
a jump process is considered. This way not only it is assumed that trading strategies
affects the stock price but also the possibility to account for sudden jumps that might
occur when the market is under stress.

The objective of this thesis is to study under which conditions we can obtain the func-
tion that represents the option price as a solution of a certain partial integro-differential
equation. Moreover, we will discuss some examples where the price function is not regular
enough in order to be a classical solution of this partial integro-differential equation.

The prices of options such as European options and barrier options can be character-
ized in terms of solutions of a partial integro differential equation with some boundary
conditions depending on the type of option considered. Conversely, if we have a solution
of a certain partial integro-differential equation (PIDE) satisfying some conditions, then
it is possible to arrive at a stochastic representation of the Feynman-Kač kind, analogous
to the Black-Scholes case. The main difference between a model with jumps and the
Black-Scholes case is a non-local term that appears in the equation, because now the
price process possesses jumps, and the option price can be discontinuous. This non-local
term makes PIDEs less easy to solve than partial differential equations. However, one
of the numerical schemes used in the literature is presented to solve such equations. In
analytical terms, if the price is not a classical (smooth) solution of the PIDE, the notion
of viscosity solution can be used. In this thesis, we also analyze existence and unique-
ness of solutions to the partial integro-differential equation (PIDE) in the framework of
Bessel potential spaces. As a model we consider a model for pricing vanilla call and put
options on underlying assets following Lévy stochastic processes. Using the theory of
abstract semilinear parabolic equations we prove existence and uniqueness of solutions in
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the Bessel potential space representing a fractional power space of the space of Lebesgue
p-integrable functions with respect to the second order Laplace differential operator. We
generalize known existence results for a wider class of Lévy measures including those
having strong singular kernel. We also prove existence and uniqueness of solutions to
the penalized PIDE representing approximation of the linear complementarity problem
arising in pricing American style of options.

In a fixed income market, practitioners usually use the price of standard (plain vanilla)
products corrected by an adjustment called the convexity adjustment. Convexity adjust-
ments are used by practitioners to value non standard products using information on
plain vanilla products.

In this thesis we explicitly compute the interbank convexity adjustment of FRAs
(Forward Rate Agreements), combining the classical affine term structure (ATS) frame-
work with a shot-noise process that is able to capture the counter-party risk of interbank
contracts.

In Section 2.1.1 we recall basic notions related to option pricing models with under-
lying assets following Lévy stochastic processes. In Section 2.1.2 we introduce the Lévy
exponential models for financial assets. In Section 2.2 we give some examples of financial
models and we introduce a notion of an admissible activity Lévy measure and we show
that this class of Lévy measures includes jump-diffusion finite activity measures present
in e.g. Merton’s or Kou’s double exponential models as well as infinite activity Lévy
measures appearing in e.g. Variance Gamma, Normal inverse Gaussian or the so-called
CGMY models. In Section 3.1 we present the definition of a price of an European op-
tion as a discounted expected value of the terminal payoff and a simple derivation of
the integro-differential equation whose solution is the discounted expected value of the
terminal payoff. Moreover, we present the partial integro-differential extension of the clas-
sical Black-Scholes equation for pricing vanilla options on underlyings following a Lévy
stochastic process. In Section 3.2 we present a result shown by Nualart and Schoutens
[65] that allows a probabilistic representation of solutions of PIDE’s through the use of a
Feynman-Kač formula. Section 3.3 is dedicated to present in detail the relation between
the price of European options (Subsection 3.3.1) and barrier options (Subsection 3.3.2),
and the solutions of the associated integro-differential equations. Also, in Subsection
3.3.2 some continuity results are presented for barrier options. Section 3.4 shows how to
perform option pricing using Fourier techniques. Section 3.5 shows a model which allows
to model feedback effects in a Lévy Model. We show that under some conditions the
price representing a security’s price satisfies a certain partial integro-differential equation
(PIDE). Section 3.6 is devoted to the problem of existence and uniqueness of solution to
the governing linear PIDE in the framework of the Bessel potential spaces. We follow the
methodology of abstract semilinear parabolic equations developed by Henry in [46]. First,
we provide sufficient conditions guaranteeing existence and uniqueness of a solution to
the linear PIDE in Bessel potential spaces in 3.6.1. Next in 3.6.2 we deal with existence
and uniqueness of a solution to a nonlinear extension of PIDE representing the penalty
method for pricing American style of put options. Section 4.1 is dedicated to present nu-
merical schemes involving finite difference methods to solve PIDEs. In subsection 4.1.2
we present an implicit-explicit scheme to solve a non-linear PIDE. Then in subsection
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4.1.5 we give some numerical results when considering the Variance-Gamma process using
a Finite difference scheme. Section (4.2) presents a Radial Basis Interpolation scheme to
solve numerically a classical PIDE and then its extension to the nonlinear case.

Section 4.3 studies the nonlinear case when the influence of the large trader is consid-
ered to be small. Section 4.4 deals with the consistency, stability and monotony of the nu-
merical scheme developed in Section 4.1. Chapter 5 deals with the pricing of Interest rate
derivatives, in particular the pricing of the Forward Rate Agreement contract. Section
5.2 presents problem formulation, Section 5.3 presents the basic assumption concerning
the risk-free interest rate, the pricing of non-defaultable bonds in 5.3.1 and defaultable
bonds in 5.3.2. Here we compute the convexity adjustment for the case whithout jump
processes in 5.3.2.1 and then in 5.3.2.2 for the case of a shot-noise process.

In the appendix we present the proofs of Propositions 3.3.1, 3.3.2 and 3.3.5.



Chapter 2

Financial models using Lévy
Processes

2.1 Background

Over recent decades, the Black–Scholes model and its generalizations become widely used
in financial markets because of its simplicity and existence of the analytic formula for
pricing European style options. According to the classical theory developed by Black,
Scholes and Merton, the price V (t, S) of an option in a stylized financial market at time
t ∈ [0, T ] and depending on the underlying asset price S can be computed as a solution
to the linear Black–Scholes parabolic equation:

∂V

∂t
(t, S) +

1

2
σ2S2∂

2V

∂S2
(t, S) + rS

∂V

∂S
(t, S)− rV (t, S) = 0, t ∈ [0, T ), S > 0. (2.1)

Here σ > 0 is the historical volatility of the underlying asset driven by the geometric
Brownian motion, r > 0 is the risk-free interest rate of zero-coupon bond. A solution is
subject to the terminal pay-off condition V (T, S) = Φ(S) at maturity t = T .

The models used in the literature postulate an economy with two traded assets, a
risky asset, usually a stock with price at time t denoted by St, and also a riskless asset,
typically a bond with price at time t denoted by Bt. The bond is taken as a numeraire
and the bond market is assumed to be perfectly elastic since the bond market is more
liquid than the stock market. We consider the Black-Scholes model

{
dSt = αSt dt+ σSt dW (t),
dBt = rBt dt.

In the Black-Scholes model we allow for short sales and assume a frictionless market, i.e
there are no transaction costs and the market is liquid. We assume that the price trajec-
tories are continuous, the stock’s volatility is constant, r is deterministic and constant.
We also assume that the today’s observed prices contain all the information of the stock.
Finally, we assume that for every derivative there is a replicating portfolio.

5



6 CHAPTER 2. FINANCIAL MODELS USING LÉVY PROCESSES

Given these assumptions we construct a self-financing portfolio based on the price of
a derivative and its underlying, Π and S,

dPt = hSt St + hΠ
t Πt. (2.2)

Since this portfolio is self-financing

Pt = hSt dSt + hΠ
t dΠt, (2.3)

or in terms of the relative weights uSt =
hSt St
Vt
, uΠ

t =
hΠ
t Πt
Vt

dPt = uSt
dSt
St

+ uΠ
t

dΠt

Πt

(2.4)

Given the assumptions and since Pt depends on S, we will have Πt = V (t, St).
Then applying Ito’s lemma to V ∈ C1,2 we get

dV = αV V dt+ σV V dWt,

where

αV =
Vt + αSVS + 1

2
σ2S2VSS

V
,

σV =
σStVS
V

. (2.5)

So far we have

{
dP = uSt

dSt
St

+ uΠ
t

dΠt
Πt
,

dV = αV V dt+ σV V dWt.

Using the dynamics for S and Π we can further simplify and obtain{
dV = V

(
uSα + uΠαV

)
dt+ V

(
uSσ + uΠσV

)
dWt,

dV = αV V dt+ σV V dWt.

In order to have a risk-free arbitrage portfolio we must make sure that the stochastic part
is zero and the drift term is equal to the risk-free short rate


uSα + uΠαV = r,
uSσ + uΠσV = 0,
uS + uΠ = 1.

Then in order for the system to have a unique solution we must have

−σ − σV − σ
αV − α

(r − α) = 0. (2.6)
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Then, plugging in (2.5) into (2.6) and after some algebra we obtain the classical Black-
Scholes PDE (2.1).

Evidence from stock markets observations indicates that this model is not the most
realistic one, since it assumes that the market is liquid, complete, frictionless and with-
out transaction costs. We also recall that the linear Black–Scholes equation provides a
solution corresponding to a perfectly replicated portfolio which need not be a desirable
property. Indeed forming now a self-financed portfolio P consisting of the stock and bond
S and B we obtain

dPt = Pt

(
uSt

dSt
St

+ uBt
dBt

Bt

)
,

where uSt =
hSt St
Vt
, uBt =

hBt Bt
Vt

, are the weights to be invested in the stock and bond
respectively. We have, after using Ito’s Lemma ([17]), the following{

dP = P
(
uSα + uBr

)
dt+ PuSσ dW,

dV = αV V dt+ σV V dWt,

where {
αV =

Vt+αSVS+ 1
2
σ2S2VSS

V
,

σV = σStVS
V

.

Then since we want to make sure that P = V we must have{
uSσ = σStVS

V
,

uB + uS = 1,

which gives the relative weights {
uS = StVS

V
,

uB = 1− StVS
V
.

In the last two decades some of these assumptions have been relaxed in order to
model, for instance, the presence of transaction costs (see e.g. Kwok [51] and Avellaneda
and Paras [9]), feedback and illiquid market effects due to large traders choosing given
stock-trading strategies (Schönbucher and Willmott [74], Frey and Patie [39], Frey and
Stremme [38]), risk from the unprotected portfolio (Jandačka and Ševčovič [48]). In all
aforementioned generalizations of the linear Black–Scholes equation (2.1) the constant
volatility σ is replaced by a nonlinear function σ̃(S∂2

SV ) depending on the second deriva-
tive ∂2

SV of the option price itself. In the class of generalized Black–Scholes equation with
such a nonlinear diffusion function, an important role is played by the nonlinear Black–
Scholes model derived by Frey and Stremme in [48] (see also [39],[36]). In this model the
asset dynamics takes into account the presence of feedback effects due to a large trader
choosing his/her stock-trading strategy (see also [74]). The diffusion coefficient is again
non-constant:

σ̃(S∂2
SV )2 = σ2

(
1− %S∂2

SV
)−2

, (2.7)
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where σ, % > 0 are constants.
Now we relax the liquid market assumption. In this economy there are two types

of traders, the reference traders and the program traders. The program traders are
also referred to as portfolio insurers since they use dynamic hedging strategies to insure
against movements in stock’s price. They can be a single trader or a group of traders
who act together. It is assumed that their trades influence the equilibrium stock price.
The reference traders can be thought of as a representative trader of many small agents
and therefore it is assumed that they act as price takers. Usually it is assumed that
D̃(t, Yt, St) is the reference trader’s demand function which depends on the income process
or some other fundamental state variable that influences the reference trader’s demand.
The aggregate demand of the program traders is denoted by φ(t, St) = ξΦ(t, St), where
ξ is the number of identical written securities that the program traders are trying to
hedge and Φ(t, St) is the demand per security being hedged. We assume for simplicity
that ξ is the same for every program trader. The general case where different securities
are considered can be seen for example in [78]. Assume the supply of the stock S̃0 is

constant and define D(t, y, s) = D̃(t,y,s)

S̃0
as the quantity demanded of the reference trader

per unit of supply. Then the total demand relative to the supply at time t is given by
G(t, y, s) = D(t, y, s) + ρΦ(t, s), where ρ = ξ

S̃0
and ρΦ(t, s) the proportion of the total

supply of the stock that is being traded by the programme traders . So, in order to get
market equilibrium we must have G(t, y, s) = 1. Assume that G is monotonic on the last
two arguments and sufficiently smooth in s and y. Then we can invert G(t, y, s) = 1 to
obtain St = ψ(t, Yt) where ψ is sufficiently smooth. For example, in [78] it is assumed
that Yt has the following dynamics

dYt = µ(t, Yt) dt+ η(t, Yt) dWt.

Then the authors obtain a generalization of the Black-Scholes pricing partial differential
equation

∂V

∂t
+

1

2

∂2V

∂2S
S2
t−

(
σ

1− ρSt− ∂φ∂S (t, St−)

)2

+ St−r
∂V

∂S
− rV = 0, (S, t) ∈]0,∞[×]0, T ],

V (S, T ) = φ(S), 0 < S <∞. (2.8)

The derivation of this equation is done in the spirit of the original argument used in
the derivation of the original Black-Scholes equation. We suppose that the price of
a derivative security is a smooth function given by Pt = V (t, St) and consider a self-
financing replicating strategy (αt, βt) consisting of a bond and a risky asset:

dPt = αt dSt + βt dBt, (2.9)

where αt = Φ(t, St). Then applying Ito’s Lemma to V (t, St) we get

dV (t, St) =

(
∂V

∂t
+

1

2

∂2V

∂2S
S2
t−v(t, St)

2

)
dt+

∂V

∂S
dSt. (2.10)
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So by comparing (2.9) with (2.10) we see that

∂V

∂t
+

1

2

∂2V

∂2S
S2
t−v(t, St)

2 = βtrBt, (2.11)

αt =
∂V

∂S
. (2.12)

Then since βt = V (t,St)−αtSt
Bt

the equation turns out to be

∂V

∂t
+

1

2

∂2V

∂2S
S2
t−v(t, St)

2 = r

(
V (t, St)−

∂V

∂S
St

)
. (2.13)

To obtain the adjusted volatility simply take into account the dynamics of the income
process and apply Ito’s lemma to ψ(t, Yt)

dSt =

(
∂ψ

∂t
+ µ(t, Yt)

∂ψ

∂y
+

1

2

∂2ψ

∂2y
S2
t−η(t, Yt)

2

)
dt+ η(t, Yt)

∂ψ

∂y
dWt. (2.14)

Thus

v(t, St) = η(t, Yt)
∂ψ

∂y
= −η(t, Yt)

Dy(t, Yt, St)

Ds(t, Yt, St) + ρ∂Φ
∂S

, (2.15)

because G(t, y, s) = 1 and since ∂G
∂S
6= 0 we can differentiate with respect to y to obtain

∂ψ
∂y

.
In this thesis we follow Frey’s approach which is to begin by proposing a dynamics for

the stock price instead of deriving it using the market equilibrium and assuming a certain
dynamic for the income process as done for example in [78]. This way Frey obtains the
same stock price dynamics as in [78] corresponding to a situation where the the demand
function is of logarithm type and does not depend on t and when the income process
follows a Geometric Brownian motion, D(y, s) = ln(y

γ

s
) where γ = σ

η
. In fact

Dy(y, s) = γ
1

y
,Ds(y, s) = −1

s
, dYt = µYt dt+ ηYt dWt, (2.16)

v(t, s) = −ηy
γ 1
y

−1
s

+ ρ∂Φ
∂S

=
σs

1− ρs∂Φ
∂S

. (2.17)

The goal is to extend the dynamics used by Frey to a Lévy process. So this model can
be thought of as a deviation to the standard jump-diffusion model instead of the Geo-
metric Brownian Motion. The level of deviation to the jump-diffusion model is measured
by a parameter ρ which is the market liquidity parameter.

Another important direction in generalizing the original Black–Scholes equation arise
from the fact that the sample paths of a Brownian motion are continuous, but the realized
stock price of a typical company exhibits random jumps over the intraday scale, making
the price trajectories discontinuous. In the classical Black–Scholes model the underlying
asset price process is assumed to follow a geometric Brownian motion. However, the
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empirical distribution of stock returns exhibits fat tails. Several alternatives have been
proposed in the literature for the generalization of this model. The models with jumps
and diffusion can, at least in part, solve the problems inherent to the linear Black–
Scholes model and they have also an important role in the options market. While in the
Black–Scholes model the market is complete, implying that every pay-off can be perfectly
replicated, in jump–diffusion models there is no perfect hedge and this way the options
are not redundant. It turns out that the option price can be computed from the solution
V (t, S) of the following partial integro-differential (PIDE) Black–Scholes equation ([24]):

∂V

∂t
(t, S) +

1

2
σ2S2∂

2V

∂S2
(t, S) + rS

∂V

∂S
(t, S)− rV (t, S)

+

∫
R
V (t, S +H(z, S))− V (t, S)−H(z, S)

∂V

∂S
(t, S)ν( dz) = 0, (2.18)

where H(z, S) = S(ez − 1) and ν is the so-called Lévy measure characterizing the under-
lying asset process with random jumps in time and space. Note that, if ν = 0 then (2.18)
reduces to the classical linear Black–Scholes equation (2.1).

The novelty and main purpose of this thesis is to take into account both directions
of generalizations of the Black–Scholes equation. The assumption that an investor can
trade large amounts of the underlying asset without affecting its price is no longer true,
especially in illiquid markets. Therefore, we will derive, analyze, and perform numerical
computation of the model. We relax the assumption of liquid market following the Frey–
Stremme model under the assumption that the underlying asset price follows a Lévy
stochastic process with jumps. We will show that the corresponding PIDE nonlinear
equation has the form:

∂V

∂t
+

1

2

σ2

(1− %S∂Sφ)2S
2∂

2V

∂S2
+ rS

∂V

∂S
− rV

+

∫
R
V (t, S +H(t, z, S))− V (t, S)−H(t, z, S)

∂V

∂S
ν( dz) = 0, (2.19)

where the function H(t, z, S) may depend e.g. on the large trader strategy function
φ = φ(t, S). This function may depend on the delta ∂SV of the price V , if % > 0.

2.1.1 Lévy Processes: definitions

Let us start with the definition of a Lévy process.

Definition 2.1.1 Consider a fixed probability space (Ω,F ,Q). A stochastic process Xt

such that X0 = 0 is called a Lévy process if:

• Xt has independent increments: for every t0 < t1 < .. < tn, the random variables
Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , ..., Xtn −Xtn−1 are independent.

• Xt has stationary increments: the law of Xt+h −Xt does not depend on t;
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• Xt is stochastically continuous ,i.e. for all a > 0 and s > 0:

lim
t→s

P[|Xt −Xs| > a] = 0.

If we drop the stationary increments condition we say that the process is an additive
process.

Definition 2.1.2 Consider a fixed probability space (Ω,F ,Q). A stochastic process Xt

such that X0 = 0 is called an additive process if:

• Xt has independent increments: for every t0 < t1 < .. < tn, the random variables
Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , ..., Xtn −Xtn−1 are independent.

• Xt is stochastically continuous ,i.e. for all a > 0 and s > 0:

lim
t→s

P[|Xt −Xs| > a] = 0.

We give now the definition of infinite divisible distributions

Definition 2.1.3 A given random variable X taking values in Rn with probability law
px is infinitely divisible if ∀ n ∈ N there exists independent and identically distributed
random variables X

(n)
1 , X

(n)
2 , .., X

(n)
n such that

X
d
= X

(n)
1 +X

(n)
1 + ...+X(n)

n .

The next theorem is an important result which gives us the link between additive and
Lévy processes and infinitely divisible distributions. The proof can be found in theorems
8.1, 9.1 and 9.8 in [72].

Theorem 2.1.4 If X = {Xt, t ∈ [0, T ]} is an additive process with increasing and pos-
itive measure pt on R\ {0} such that ps (B) → pt (B) as s → t for all measurable sets
B ⊂ {x : |x| ≥ ε} , for some ε > 0, and for all t ∈ [0, T ] satisfying∫

R

(
1 ∧ x2

)
pt(dx) <∞. (2.20)

Then the distribution of the random variable Xt is infinitely divisible for each t ∈
[0, T ] and the characteristic function of Xt is given by the Lévy-Khintchine representation
formula

E [exp (izXt)] = exp (ψt (z)) ,

where the characteristic exponent is defined by

ψt (z) := iγtz −
At
2
z2 +

∫
R

(
exp (izx)− 1− izx1{|x|<1}

)
pt (dx) ,

and where At is a nonnegative and increasing continuous function and γt is a continuous
function.
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We only consider a right continuous with limits to the left (cádlag) version of Xt and will
denote ∆Xt = Xt −Xt− , the jump of X at time t.

If we consider a Lévy process Xt then the characteristic function has the following
Lévy-Khintchine representation ([72],[24],[6]):

E
[
eizXt

]
= etφ(z), φ (z) = −σ

2z2

2
+ iγz +

∫ +∞

−∞

(
eizx − 1− izx1|x|≤1

)
ν (dx) .

where σ ≥ 0 and γ ∈ R and ν is a positive Radon measure on R \ {0} verifying:∫ 1

−1

x2ν (dx) <∞. (2.21)

and ∫
|x|>1

ν (dx) <∞. (2.22)

The measure ν is defined by:

ν (A) = E [# {t ∈ [0, 1] : ∆Xt ∈ A}] =
1

T
E [# {t ∈ [0, T ] : ∆Xt ∈ A}] , A ∈ B(R), (2.23)

and is called the Lévy measure of X. It gives the mean number, per unit of time, of
jumps whose amplitude belongs to A.

The Lévy-Itô decomposition gives a representation where X is interpreted as a com-
bination of a Brownian motion with drift and a infinite sum of independent compensated
Poisson processes with several jump sizes x (see [24])

Xt = γt+ σWt +

∫ t

0

∫
|x|≥1

xJX (ds, dx) +

∫ t

0

∫
|x|<1

xJ̃X (ds, dx) , (2.24)

where JX is the Poisson random measure defined in the following way:

JX ([0, t]× A) = # {s ∈ [0, t] : ∆Xs ∈ A} . (2.25)

The compensated Poisson measure is defined by:

J̃X ([0, t]× A) = JX ([0, t]× A)− tν (A) . (2.26)

A Lévy process is a strong Markov process, the associated semigroup is a convolution
semigroup and its infinitesimal generator L : f → Lf is an integro-differential operator
given by (see [6]):

Lf(x) = lim
t→0

E [f (x+Xt)]− f (x)

t
(2.27)

=
σ2

2

∂2f

∂x2
+ γ

∂f

∂x
+

∫
R

[
f (x+ y)− f (x)− y1|y|≤1

∂f

∂x
(x)

]
ν ( dy) , (2.28)

which is well defined for f ∈ C2 (R) with compact support.
We now define the concept of structure-preserving equivalent measures in a given

market.
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Definition 2.1.5 If Q is equivalent to the original probability measure P and the Lévy
process X is a Q-Lévy process we say that a probability measure Q on (Ω,F ,F) is a
P-structure-preserving equivalent measure, in the market model M .

We now proceed by presenting a characterization result for structure preserving equiv-
alent measures. A proof for the following theorem can be found in [72, Theorem 33.1].

Theorem 2.1.6 Consider the Lévy process X = {Xt, t ∈ [0, T ]} with Lévy triplet
[γ, σ2, ν( dx)] and with Lévy Ito decomposition under the probability measure P. Then
there is P-structure-preserving equivalent measure Q, such that X is a Q-Lévy process
with triplet [γ̃, σ̃2, ν̃(dx)] if and only if

(i) ν̃(dx) = h(x)ν(dx) for some Borel function h : R→ (0,∞).

(ii) γ̃ = γ + cσ +
∫
R x1{|x|<1}(h(x)− 1)ν(dx) for some c ∈ R.

(iii) σ̃ = σ.

(iv)
∫
R(1−

√
h(x))2ν(dx) <∞.

Furthermore the density process {dQt
dPt = Lt, t ∈ [0, T ]} converges uniformly in t for

every bounded interval, P-a.s. and is given by

Lt = exp

(
cWt −

1

2
c2t+

∫ t

0

∫
|x|>ε

log h(x)N (ds, dx)− t
∫
|x|>ε

(h(x)− 1)ν(dx)

)
,(2.29)

for small ε and with EP[Lt] = 1, for every t ∈ [0, T ].

2.1.2 Exponential Lévy models

Let {St, t ≥ 0} be a stochastic process representing the price of a financial asset under a
filtered probability space (Ω,F , {Ft} ,P). The filtration {Ft} represents the price history
up to time t. If the market is arbitrage-free, then there is a measure Q equivalent to P
under which the discounted prices of all traded financial assets are Q− martingales. This
result is known as the fundamental theorem of asset pricing (see [24]). The measure Q
is also known as the risk neutral measure. We consider here the exponential Lévy model
in which the risk-neutral dynamics of St under Q is given by St = ert+Xt , where Xt is a
Lévy process under Q with characteristic triplet (σ, γ, ν). Then the arbitrage-free market

hypothesis imposes that Ŝt = Ste
−rt = eXt is a martingale, which is equivalent to the

following conditions imposed on the triplet (σ, γ, ν)∫
|y|>1

eyν ( dy) <∞, γ = −σ
2

2
−
∫ +∞

−∞

(
ey − 1− y1|y|≤1

)
ν (dy) . (2.30)

Then the infinitesimal generator (2.28) becomes

Lf(x) = −σ
2

2

∂f

∂x
+
σ2

2

∂2f

∂x2
+

∫
R

[
f (x+ y)− f (x)− (ey − 1)

∂f

∂x

]
ν ( dy) . (2.31)
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The risk-neutral dynamics of St under Q is given by

St = S0 +

∫ t

0

rSu− du+

∫ t

0

σSu− dWu +

∫ t

0

∫
R

(ex − 1)Su− J̃X (du, dx) . (2.32)

The price process St is also a Markov process with state space (0,∞) and infinitesimal
generator (see [24])

LSf(x) = lim
h→0

E[f(xeXh)]− f(x)

h
(2.33)

= rx
∂f

∂x
+
σ2x2

2

∂2f

∂x2
+

∫
R

[
f (xey)− f (x)− x (ey − 1)

∂f

∂x

]
ν ( dy) . (2.34)

A Lévy process Yt is called a Lévy type stochastic integral if

dYt = γ dt+ σ dWt +

∫
|y|<1

H(t, y)J̃Y ( dt, dy) +

∫
|y|>1

K(t, y)JY ( dt, dy).

An important result that will be needed later is the Ito’s lemma which can be found in
[6]

Result 2.1.7 Let f ∈ C1,2([0, T ]× R) and let Yt be Lévy type stochastic integral. Then

df(t, Yt) =
∂f

∂t
dt+

∂f

∂y
dY c

t +
1

2

∂2f

∂y2
d[Y c

t , Y
c
t ]

+

∫
|y|>1

f(t, Yt +K(t, y))− f(t, Yt)JY ( dt, dy)

+

∫
|y|<1

f(t, Yt +H(t, y))− f(t, Yt)J̃Y ( dt, dy)

−
∫
|y|<1

f(t, Yt +H(t, y))− f(t, Yt)−H(t, y)
∂f

∂y
ν( dy) dt. (2.35)

An example of a Lévy Process is the jump-diffusion model first introduced by Merton
in [60]. This model assumes the following dynamics for the stock’s price logarithm

dXt =

(
b+

∫
|x|<1

xν( dx)

)
dt+ σ dWt +

∫
|x|<1

xJ̃X( dt, dx) +

∫
|x|>1

xJX( dt, dx).

Then one obtains the dynamics for the stock price applying Ito’s lemma to St = eXt

dSt = St−

(
b+

1

2
σ2

)
dt+ σSt− dWt + St−

∫
R

(ex − 1) JX( dt, dx),

or in terms of jumps of St

dSt = St−

(
b+

1

2
σ2

)
dt+ σSt− dWt +

∫ ∞
0

yJS( dt, dy).

.
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2.2 Examples of Lévy processes in finance

The exponential Lévy models considered in the financial literature are of two types. The
first type of models are called jump-diffusion models where we represent the log-price as
a Lévy process with a non zero diffusion part (σ > 0) and with a jump process with finite
activity (i.e ν(R) <∞). The second type of models are called infinite activity pure jump
models in which case there is no diffusion part and only a jump process with infinite
activity (i.e ν(R) =∞).

Definition 2.2.1 A Lévy measure ν is called an admissible activity Lévy measure if

0 ≤ ν( dz)

dz
≤ h(z) ≡ C|z|−α

(
eD
−z1z≥0 + eD

+z1z<0

)
e−µz

2

, (2.36)

for any z ∈ R and the shape parameters α ≥ 0, D± ∈ R and µ ≥ 0.

Remark 1 The conditions
∫
R min(z2, 1)ν( dz) < ∞ (see (2.22)) and

∫
|z|>1

ezν( dz) <

∞ (see (2.30)) are satisfied provided that ν is an admissible Lévy measure with shape
parameters α < 3, and, either µ > 0, D± ∈ R, or µ = 0 and D− + 1 < 0 < D+.

There is a wide class of exponential Lévy models proposed in the financial modelling
literature that differ from each other only in the choice of the Lévy measure. In this
section we present some examples of such models.

2.2.1 Jump-Diffusion models

A Lévy process of jump-diffusion type is of the following form:

Xt = γt+ σWt +
Nt∑
i=1

Yi

where σ > 0, Nt is a Poisson process with intensity λ that counts the jumps of Xt

and Yi, i = 1, 2, 3... are independent and identically distributed random variables with
distribution given by µ. The Lévy measure ν is given by λµ and the drift γ is equal to

−σ
2

2
−
∫
R

(
ey − 1− y1|y|≤1

)
ν ( dy) .

2.2.1.1 Merton’s model

This model was introduced by Merton [60] and was the first jump-diffusion model pro-
posed in the financial literature. The random variables Yi, i = 1, 2, 3... are normally
distributed with mean m and variance δ. Its Lévy density is given by:

ν(x) = λ
1

δ
√

2π
e−

(x−m)2

2δ2 (2.37)
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Then it’s possible to obtain the probability density of Xt as a series that converges rapidly
(see [24]):

pt(x) =
∞∑
j=0

e−λt(λt)j
e
− (x−γt−jm)2

2(σ2t+jδ2)

j!
√

2π(σ2t+ jδ2)
. (2.38)

Thus, we can express the price of an European call option as a weighted sum of Black-
Scholes prices:

CMerton(S0, K, T, σ, r) = e−rT
∞∑
j=0

e−λt
(λt)j

j!
erjTCBS(S0e

jδ2

T , K, T, σj, rj), (2.39)

where rj = r − λ(em+ δ2

2 − 1) + jm
T

, σj =
√
σ2 + jδ2

T
and CBS(S,K, T, σ, r) is the well

known Black-Scholes formula.
For the Merton model the Lévy measure satisfies ν(R) < ∞. Moreover, ν is the

admissible activity measure with the shape parameters µ = 1/(2δ2) > 0, α = 0 and any
D±.

2.2.1.2 Kou’s double exponential model

Another popular and frequently used model is the so-called double exponential model
which was introduced by Kou in [50] and it also referred to as Kou’s model. In this
model the distribution of jumps have a density of the form:

ν( dx) = λ
(
θλ+e−λ

+x1x>0 + (1− θ)λ−eλ−x1x<0

)
dx, (2.40)

where λ is the intensity of jumps, θ is the probability of having a positive jump and
λ± > 0 correspond to the level of decay of the distribution of positive and negative
jumps. This implies that the distribution of jumps is asymmetric and the tails of the
distribution of returns are semi-heavy. In Kou’s double exponential model for the Lévy
measure we again have ν(R) < ∞, and, ν is an admissible activity Lévy measure with
the shape parameters µ = 0, α = 0, and D+ = λ− > 0, D− = −λ+ < 0.

2.2.2 Infinite activity pure jump models

Examples of infinite activity Lévy processes are the Variance Gamma (see [55] ) and
Normal Inverse Gaussian (NIG) processes (see [14]). They are constructed by means
of subordination of a Brownian motion and a tempered α-stable process: the Variance
Gamma process corresponds to α = 0 and the NIG process corresponds to α = 1/2.
These models are popular in the literature because the probability density function of
the subordinator is known in a closed form for those values of α (see [24]). The Variance
Gamma and NIG processes are special cases of the Generalized Hyperbolic model which
is a process of infinite variation without a Gaussian part. Other examples of these kind
of processes are the Meixner process and CGMY model which consist of more general
processes and more complicated Lévy measures.
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2.2.2.1 Variance Gamma Process

The Variance Gamma process is a pure discontinuous process of infinite activity and finite
variation (

∫
|x|≤1
|x|ν( dx) < ∞) that is widely used in the financial modelling. Its Lévy

measure is given by

ν (x) =
1

κ |x|
eAx−B|x| with A =

θ

σ2
and B =

√
θ2 + 2σ

2

κ

σ2
,

where σ and θ are parameters related with the volatility and drift of the Brownian motion
with drift and κ is the parameter related with the variance of the subordinator, in this
case the Gamma process (see [24]). The probability density is given by

pt(x) = CeAx|x|
t
kK t

k
− 1

2
(|x|),

where K is the modified Bessel Function of second kind.
The characteristic function of Xt + γt is equal to :

Φt (u) = eituγφt (u) = eituγ
(

1 +
σ2u2κ

2
− iθκu

)−t/κ
,

where γ is determined by the martingale condition and φt (u) is the characteristic function
of Xt. In fact, we must have

E[e−rTST |Ft] = e−rtSt, (2.41)

where

St = S0e
rt+γt+Xt (2.42)

is the risk-neutral process introduced in [55,56]. Therefore, γ = 1
κ
log(1− σ2κ

2
− θκ).

For the Variance Gamma process we have ν(R) = ∞. Moreover, ν is an admissible
activity Lévy measure with shape parameters µ = 0, D+ = A+B > 0, D− = A−B < 0,
and α = 1. The condition D− + 1 < 0 < D+ is satisfied provided that κ(2θ + σ2) < 2.

2.2.2.2 Normal Inverse Gaussian model

The NIG process is a process of infinite activity and infinite variation without any Brow-
nian component. Its Lévy measure is given by (see [24])

ν (x) =
C

|x|
eAxK1 (B |x|)

and

C =

√
θ2 + σ2

κ

2πσ
√
κ
,A =

θ

σ2
, B =

√
θ2 + σ2

κ

σ2
,
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where θ,σ and κ have the same meaning as in the Variance Gamma process. The proba-
bility density is:

pt(x) = CeAx
K1(B

√
x2 + t2σ2

κ
)√

x2 + t2σ2

κ

,

where K is the modified Bessel Function of second kind. The characteristic function is
given by

Φt (u) = e
t
κ
− t
κ

√
1+u2σ2κ−2iuθκ. (2.43)

2.2.2.3 Generalized Hyperbolic model

The Generalized Hyperbolic model is a process of infinite variation without gaussian part.
Its characteristic function is given by (see [24])

φt(u) = eiµu(
α2 − β2

α2 − (β + iu)2
)
t

2κ

K t
κ
(δ
√
λ2 − (β + iu)2)

K t
κ
(δ
√
α2 − β2)

, (2.44)

where δ is a scale parameter, µ is the shift parameter and κ has the same meaning that
in the Variance Gamma process. The parameters λ, α and β determine the shape of the
distribution. The density function

pt(x) = C(
√
δ2 + (x− µ)2)

t
k
− 1

2K t
κ
− 1

2
(α
√
δ2 − (x− µ)2)eβ(x−µ),

where K is the modified Bessel function and

C =
(
√
α2 − β2)

t
k

√
2πα

t
κ
− 1

2 δ
t
κK t

κ
(δ
√
α2 − β2)

.

The Variance Gamma process is obtained for µ = 0 and δ = 0. The Normal Inverse
Gaussian process corresponds to λ = −1

2
. Here θ,σ and κ have the same meaning as in

the Variance Gamma process and K1 is the modified Bessel function of the second kind
(see [24]).

For the Lévy measure of the NIG process we have ν(R) =∞. Recall that the modified
Bessel function K1 of the second kind satisfies the following asymptotic behavior:

K1(x) = e−x
√
π

2
x−

1
2 (1 +O(

1

x
)), as x→∞, K1(x) ∼ 1

2

(x
2

)−1

as x→ 0 ,

(see [1]). Thus ν is an admissible activity Lévy measure with the shape parameters µ = 0,
D+ = A+ B > 0, D− = A− B < 0, α = 2. The condition D− + 1 < 0 < D+ is satisfied
provided that κ(2θ + σ2) < 1.
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2.2.2.4 CGMY process

The so called CGMY distribution process introduced by Carr et al. in [20],[21] has four
parameters C,G,M and Y with the characteristic function given by

Φt (u) = exp(Γ(−Y )Ct
(
(M − iu)Y −MY + (G+ iu)Y −GY

)
), and the Lévy mea-

sure given by

ν( dx) =
(
CeGx|x|−1−Y 1x<0 + Ce−Mx|x|−1−Y 1x>0

)
dx, (2.45)

where C,G,M > 0 and Y < 2. The parameter C measures the overall level of activity.
The parameters G and M are the left and right tail decay parameters, respectively.
When G = M the distribution is symmetric. Low values of Y yield a finite activity
process. The process has infinite activity and finite variation when Y ∈ (0, 1). For
higher values of Y ∈ [1, 2) the process has infinite activity and infinite variation. ν is
an admissible activity Lévy measure with the shape parameters µ = 0, α = 1 + Y , and
D+ = G > 0, D− = −M < 0.



Chapter 3

Integro-differential equations for
option pricing

3.1 Definitions

The value of a European option is defined as the discounted conditional expectation of
the terminal payoff H (ST ) under the risk neutral probability Q:

C (t, St) = E
[
e−r(T−t)H (ST ) |Ft

]
= E

[
e−r(T−t)H (ST ) |St = S

]
= e−r(T−t)E[H(Ser(T−t)+XT−t)],

because of the Markov property and the fact that Xt is a Lévy process.

If H is in the domain of the infinitesimal generator LS, then if we differentiate C(t, St)
with respect to t ,we obtain the following integro-differential equation :

∂C

∂t
(t, S) + LSC (t, S)− rC (t, S) = 0;C (T, S) = H (S) , (3.1)

where LS is defined by (2.34).

Defining τ = T − t, x = ln
(
S
S0

)
, h (x) = H (S0e

x) and f (τ, x) = erτC (T − t, S0e
x)

we get

f (τ, x) = E
[
H
(
Serτ+Xτ

)]
= E

[
H
(
S0e

x+rτ+Xτ
)]

= E [h (x+ rτ +Xτ )] . (3.2)

The associated infinitesimal generator is given by (2.31). Then, similarly to the previous
case, differentiating (3.2) with respect to τ we obtain the integro-differential equation

∂f

∂τ
= Lf + r

∂f

∂x
, (τ, x) ∈ (0, T ]× R; (3.3)

f (0, x) = h (x) , x ∈ R. (3.4)

20
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Indeed, by the definition of the associated infinitesimal generator we get

Lf(x) = lim
k→0

E[f(τ, x+Xk)]− f(τ, x)

k

= lim
k→0

E[h(x+ rτ +Xk+τ )]− E[h(x+ rτ +Xτ )]

k

= lim
k→0

E[h(x+ r(τ + k) +Xk+τ )]− E[h(x+ rτ +Xτ )]

k

− lim
k→0

E[h(x+ r(τ + k) +Xk+τ )]− E[h(x+ rτ +Xk+τ )]

k

=
∂f

∂τ
− lim

k→0

E[h(x+ r(τ + k) +Xk+τ )]− E[h(x+ rτ +Xk+τ )]

k

=
∂f

∂τ
− lim

z→0
r
E[h(x+ z + rτ +X z

r
+τ )]− E[h(x+ rτ +X z

r
+τ )]

z
=
∂f

∂τ
− r∂f

∂x
.

3.2 Feynman-Kač formula for PIDEs

For t ≥ 0, let Ft denote the σ−algebra generated by the random variables {Xs, 0 ≤ s ≤ t}
and

H2
T =

{
φt, t ∈ [0, T ] : ‖φ‖2 = E[

∫ T

0

|φt|2 dt] <∞
}

M2
T is the subspace of H2

T that contains predictable processes. Let H2
T (l2) and M2

T (l2)
denote the corresponding spaces of l2-valued processes equipped with the norm:

‖φ‖2 = E[

∫ T

0

∞∑
i=1

|φ(i)
t |2 dt].

Finally set H2
T = H2

T ×M2
T (l2).

Following Nualart and Schoutens [64], they define the power-jump processes for ev-

ery i = 1, 2, 3, ....,
{
X

(i)
t , t ≥ 0

}
and the compensated power-jump processes or Teugel

martingales
{
Y i
t = X i

t − E
[
X

(i)
t

]
, t ≥ 0

}
, in the following way:

X
(1)
t = Xt,

X
(i)
t =

∑
0<s≤t

(∆Xs)
i , i = 2, 3, 4, ....,

Y
(i)
t = X

(i)
t − tE

[
X

(i)
t

]
, i ≥ 1,

Then applying a orthonormalization procedure to the martingales Y (i) we obtain a set of
pairwise strongly orthonormal martingales

{
H(i), t ≥ 0

}
, i = 1, 2, .... such that each H(i)

is a linear combination of the Y (j), j = 1, 2, ...i :

H(i) = ci,iY
(i) + ...+ ci,1Y

(1),
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where

c1,1 = [

∫
R
y2ν(dy)]−1/2

and

E[X1] = a+

∫
|x|≥1

xν(dx).

The constants ci,j are the orthonormalization coefficients of the polynomials {1, x, x2, x3, ....}
with respect to the measure µ(dx) = x2ν(dx) + σ2δ0(dx) and the polynomials we want
to find are of the form

qi−1(x) = ci,1 + ci,2x+ ci,3x
2 + ...+ ci,i−1x

i−2 + ci,ix
i−1, i = 1, 2, 3....

Then, we just have to multiply by x to get the desired pairwise strongly orthonormal
martingales:

pi(x) = ci,1x+ ci,2x
2 + ci,3x

3 + ...+ ci,i−1x
i−1 + ci,ix

i, i = 1, 2, 3....

We now see that:
H

(i)
t = pi(Y

(i)).

An important result in Nualart and Schoutens [64] is the predictable representation prop-
erty:

Theorem 3.2.1 Let F ∈ L2(Ω,FT ,P).Then F has a representation of the form:

F = E[F ] +
∞∑
j=1

∫ T

0

φ
(j)
t dH

(j)
t where φ

(j)
t (3.5)

are predictable processes such that

E[

∫ T

0

∞∑
j=1

|φ(j)
t |2 dt] <∞. (3.6)

Consider the Backward Stochastic Differential Equation (BSDE):

−dYt = b(t, Yt− , Zt) dt−
∞∑
i=0

Z
(i)
t dH

(i)
t , YT = ξ, (3.7)

where H
(i)
t is the orthonormalized Teugel martingale of order i associated with the Lévy

process X, b : Ω × [0, T ] × R × M2
T (l2) → R is a measurable function and uniformly

Lipschitz in the first two components and ξ ∈ L2
T .

Consider the particular case of a BSDE:

dYt =
∞∑
i=0

Z
(i)
t dH

(i)
t , YT = h (XT ) , (3.8)
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Let f(τ, x) be the solution of the following PIDE:

∂f

∂τ
= c

∂f

∂x
+

∫
R

[
f (τ, x+ y)− f (τ, x)− y∂f

∂x

]
ν ( dy) ,

f (0, x) = h (x) , (3.9)

where c = r + γ +
∫
|y|≥1

yν ( dy) = a+
∫
|y|≥1

yν ( dy) .

Defining g (t, x) = f (τ, x), where τ = T − t , we obtain from (3.9):

∂g

∂t
+ c

∂g

∂x
+

∫
R

[
g (t, x+ y)− g (t, x)− y ∂g

∂x

]
ν ( dy) = 0,

g (T, x) = h (x) (3.10)

If g is sufficiently smooth, then by applying the Itô formula to g (t,Xt) we obtain the
following probabilistic representation for the case of a Lévy process given by Xt = (r +
γ)t+Jt = a+Jt,where Jt is a pure jump process. For a detailed proof of this proposition
see [65].

Proposition 3.2.1 Assume σ = 0 and ∃λ > 0 such that∫
|x|>1

eλ|x|ν (dx) <∞.

If g ∈ C1,2 is a classical solution of (3.10) and ∂g
∂x

and ∂2g
∂x2 are bounded by a polynomial

function of x, uniformly in t, then the unique adapted solution of (3.8) is given by

Yt = g (t,Xt) ,

where

Z1
t =

∫
R

[
g (t,Xt− + y)− g (t,Xt−)− y ∂g

∂x
(t,Xt−)

]
p1 (y) ν ( dy) (3.11)

+
∂g

∂x
(t,Xt−)

(∫
R
y2ν ( dy)

)1/2

,

Zi
t =

∫
R

[
g (t,Xt− + y)− g (t,Xt−)− y ∂g

∂x
(t,Xt−)

]
pi (y) ν ( dy) , i ≥ 2

and g (t, x) = E [h (XT ) |Xt = x] .

The probabilistic representation

g (t, x) = E [h (XT ) |Xt = x] (3.12)

obtained in the previous proposition is a Feynman-Kač formula for the solution of the
PIDE (3.10).



24
CHAPTER 3. INTEGRO-DIFFERENTIAL EQUATIONS FOR OPTION

PRICING

Sketch of the proof. We can apply Itô’s formula for processes with jumps, presented
in Proposition 8.19 of [24], to g(s,Xs) from s = t to s = T :

g(T,XT ) = g(t,Xt) +

∫ T

t

∂g

∂t
(s,Xs−) ds+

∫ T

t

∂g

∂x
(s,Xs−) dXs

+
∑
t<s≤T

[g(s,Xs)− g(s,Xs−)− ∂g

∂x
(s,Xs−)∆Xs]. (3.13)

Making use of Lemma 5 in [64] and applying it to h(s, y) = g(s,Xs) − g(s,Xs− + y) −
∂g
∂x

(s,Xs−)y we get,

g(T,XT ) = g(t,Xt) +

∫ T

t

∂g

∂t
(s,Xs−) ds+

∫ T

t

∂g

∂x
(s,Xs−) dXs

+
∞∑
i=1

∫ T

t

∫
R
(g(s,Xs)− g(s,Xs− + y)− ∂g

∂x
(s,Xs−)y)pi(y)ν( dy) dH(i)

s

+

∫ T

t

(

∫
R
g(s,Xs)− g(s,Xs− + y)− ∂g

∂x
(s,Xs−)yν( dy)) ds. (3.14)

But Xt = Y
(1)
t + tE[X1] = (

∫
R y

2ν( dy))1/2H
(1)
t + t(a+

∫
|y|≥1

yν( dy)), so

h(XT ) = g(t,Xt) +

∫ T

t

[
∂g

∂t
(s,Xs−) +

∫
R
(g(s,Xs)− g(s,Xs− + y)− ∂g

∂x
(s,Xs−)y)ν( dy)

+ (a+

∫
|y|≥1

yν( dy))
∂g

∂x
(s,Xs−)] ds+

∫ T

t

∂g

∂x
(s,Xs−)(

∫
R
y2ν( dy))1/2 dH(1)

s

+
∞∑
i=1

∫ T

t

(

∫
R
(g(s,Xs)− g(s,Xs− + y)− ∂g

∂x
(s,Xs−)y)pi(y)ν( dy)) dH(i)

s .(3.15)

Then because g(t, x) solves (3.9) and taking expectations in (3.15), we get:

g (t, x) = E [h (XT ) |Xt = x] .

The next example shows how to perform the orthonormalization procedure described
above and presents the Feynman-Kač formula for a pure jump process.

Example 3.2.2 Consider the case where we have the sum of two compensated Poisson
processes, Xt = N1

t + N2
t where N1

t = Nt − λ1t and N2
t = Nt − λ2t, with Lévy measure

ν(dx) = (λ1 + λ2)δ1(x) dx. Then performing a orthonormalization procedure we get

ψ0 = 1⇒ q0 =
1

(
∫
R x

2ν(dx))1/2
=

1

(
∫
R x

2(λ1 + λ2)δ1(x) dx)1/2
=

1

(λ1 + λ2)1/2

ψ1 = x+ a1,0q0 ⇒ ψ1 = x− 〈x, q0〉 q0 = x−
∫
R
x

1√
λ1 + λ2

(λ1 + λ2)δ1(x)
1√

λ1 + λ2

dx

= x− 1⇒ ψ1 = 0⇒ q1 = 0.
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By recurrence we get that qi = 0, i = 1, 2, 3, ... . Then in terms of previous notation
p1(x) = x√

λ1+λ2
and pi(x) = 0, i = 2, 3, ..., which implies

H
(1)
t =

1√
λ1 + λ2

Xt and H
(i)
t = 0, i = 2, 3, .... (3.16)

Then, by Proposition (3.2.1)

Yt = h (XT )−
∫ T

t

Z(1)
s dH(1)

s ,

where

Z
(1)
t = [g(t, x+ 1)− g(t, x)− ∂g

∂x
]
√
λ1 + λ2 +

∂g

∂x

√
λ1 + λ2

= [g(t, x+ 1)− g(t, x)]
√
λ1 + λ2.

Then,

Yt = h (XT )−
∫ T

t

[g(t,Xs− + 1)− g(t,Xs−)]
√
λ1 + λ2

1√
λ1 + λ2

dXs ⇔

Yt = h (XT )−
∫ T

t

[g(t,Xs− + 1)− g(t,Xs−)] dXs.

Moreover,
g(t, x) = E[h (XT ) |Xt = x]. (3.17)

Notice that in Proposition 3.2.1, g is assumed to be smooth and its derivatives have
to be bounded by a polynomial function of x, uniformly in t. However, these conditions
are rarely satisfied in applications.

Example 3.2.3 Consider an European call option with payoff function H(x) = (x− 1)+

and strike price K = 1. We see that the first derivative of the payoff function has a
discontinuity at x = 1:

H
′
(x) =

{
1 if x > 1,
0 if x < 1.

Then, we see that the second derivative diverges at x = 1. So, when t tends to T and if
the option is at the money (S = K) the second derivative of the price function tends to
the second derivative of the payoff function that diverges when S = K. This means that
the gamma of the call option is not uniformly bounded in time.

3.3 Option prices as classical solutions of PIDEs

3.3.1 European Options

Consider an European option with maturity T and payoff H (ST ). Assume that the payoff
function is a Lipschitz function

|H (x)−H (y)| ≤ c |x− y| (3.18)
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Figure 3.1: As T tends to zero the gamma of the option
tends to infinity.

for some c > 0. As we already know, the value of that option at time t is :

C (t, St) = E
[
e−r(T−t)H (ST ) |St = S

]
= e−r(T−t)E

[
H
(
Ser(T−t)+XT−t

)]
. (3.19)

We will assume that Ŝt = eXt is a square integrable martingale∫
|x|>1

e2yν (dy) <∞. (3.20)

Then the dynamics of Ŝt is given by:

dŜt

Ŝt−
= σ dWt +

∫
R

(ex − 1) J̃X (dt, dx) , sup
t∈[0,T ]

E
[
Ŝ2
t

]
<∞. (3.21)

The proofs of the following propositions are presented in [83] and are shown in greater
detail in the appendix. These propositions will be needed to prove the Proposition 3.3.3.

Proposition 3.3.1 Let the payoff function H satisfy the Lipschitz condition (3.18).
Then the forward value of an European option defined by (3.2), f(τ, x) = E[H(Sex+rτ+Xτ )],
is continuous on [0, T ]× R.

Proposition 3.3.2 Let h be a measurable function with polynomial growth at infinity:
∃p > 0, |h(x)| ≤ C(1 + xp). If

σ > 0 or ∃β ∈ (0, 2) such that lim
ε→0

inf
1

ε2−β

∫ ε

−ε
|x|2 ν ( dx) > 0 (3.22)

and

∀n ≥ 0,

∫
|y|>1

|y|nν( dy) <∞, (3.23)

Then, f(τ, x) = E[h(x+ rτ +Xτ )] belongs to C∞((0, T ]× R).

The proof of this proposition, following the proof given in Voltchkova [26], is presented
here in greater detail.
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Proposition 3.3.3 Consider the exponential Lévy model St = S0e
rt+Xt where the Lévy

process X verifies (3.20) and (3.22). Then the value of a European option with terminal
payoff H (ST ) (satisfying (3.18)) given by

C : [0, T ]× (0,∞)→ R, (t, S)→ C (t, S) = E
[
e−r(T−t)H (ST ) |St = S

]
(3.24)

is continuous on [0, T ]×(0,∞), C∞ on (0, T )×(0,∞) and satisfies the integro-differential
equation:

∂C

∂t
(t, S) + rS

∂C

∂S
(t, S) +

σ2S2

2

∂2C

∂S2
(t, S)− rC (t, S) +

+

∫ [
C (t, Sey)− C (t, S)− S (ey − 1)

∂C

∂S
(t, S)

]
ν ( dy) = 0; (3.25)

on [0, T )× (0,∞) with the terminal condition:

C (T, S) = H (S) ,∀S > 0 (3.26)

Proof. By Proposition 3.3.1 we know that C (t, S) = erτf(τ, x) is continuous on [0, T ]×R
and by Proposition 3.3.2, C(t, St) ∈ C∞((0, T )× (0,∞)).

It remains to prove that C (t, S) satisfies (3.25).
The risk neutral dynamics of St under Q is given by

dSt = rSt− dt+ σSt− dWt +

∫
R
(ex − 1)St− J̃X (dt, dx) .

Applying the Itô formula to Ĉt = e−rtC(t, St), where St = ert+Xt we get (see Propo-
sition 8.18 of [24]),

d(e−rtC(t, St)) = e−rt(−rC(t, St−) dt+
∂C

∂t
(t, St−) dt+

σ2

2
S2
t−
∂2C

∂S2
(t, St−) dt

+
∂C

∂S
(t, St−) dSt +

∫
R
(C(t, y + St−)− C(t, St−)− y∂C

∂S
(t, St−))J̃S (dt, dy)).

Simplifying and plugging in the dynamics for St we get:

dĈt = e−rt
∂C

∂S
(t, St−)σSt− dWt + e−rt

∫
R
(C(t, St−e

x)− C(t, St−))J̃X (dt, dx)

+ e−rt(−rC(t, St−) +
∂C

∂t
(t, St−) +

σ2

2
e−rtS2

t−
∂2C

∂S2
(t, St−) + rSt−

∂C

∂S
(t, St−)

+

∫
R
(C(t, St−e

x)− C(t, St−)− St−(ex − 1)
∂C

∂S
(t, St−))ν( dx)) dt

= b(t) dt+ dMt,

where

b(t) = −rC(t, St−) +
∂C

∂t
(t, St−) +

σ2

2
e−rtS2

t−
∂2C

∂S2
(t, St−) + rSt−

∂C

∂S
(t, St−)

+

∫
R
(C(t, St−e

x)− C(t, St−)− St−(ex − 1)
∂C

∂S
(t, St−))ν( dx),

Mt =

∫ T

0

e−rt
∂C

∂S
(t, St−)σSt− dWt +

∫ T

0

e−rt
∫
R
(C(t, St−e

x)− C(t, St−))J̃X (dt, dx) .
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It remains to prove that Mt is a martingale, because by proposition 8.9 of [24], if Ĉt−
Mt =

∫ t
0
b(s) ds is a continuous martingale with finite variation paths then

∫ t
0
b(s) ds = X0

a.s, which implies that b(t)=0 a.s.

In order for
∫ t

0
e−rt

∫
R(C(t, St−e

x) − C(t, St−))J̃X (dt, dx) to be a martingale we have
to show that:

E[

∫ T

0

e−2rt

∫
R
(C(t, St−e

x)− C(t, St−))2ν( dx) dt] <∞.

Then, by the Lipschitz condition

E[

∫ T

0

e−2rt

∫
R
(C(t, St−e

x)− C(t, St−))2ν( dx) dt] ≤ E[

∫ T

0

e−2rt

∫
R
c2S2

t−(ex − 1)2ν( dx) dt].

Moreover,

c2

∫
R
(ex − 1)2ν( dx) = c2

∫
|x|≤1

(ex − 1)2ν( dx) + c2

∫
|x|>1

(ex − 1)2ν( dx)

≤ k̃2

∫
|x|≤1

|x|2ν( dx) + c2

∫
|x|>1

(ex − 1)2ν( dx)

= k̃2

∫
|x|≤1

|x|2ν( dx) + c2

∫
|x|>1

(e2x + 1− 2ex)ν( dx)

≤ k̃2

∫
|x|≤1

|x|2ν( dx) + k̃2

∫
|x|>1

(e2x + 1)ν( dx),

for some k̃ sufficiently big.
Then,

E[

∫ T

0

e−2rt

∫
R
c2S2

t− (ex − 1)2 ν( dx) dt]

≤ E[

∫ T

0

S2
t−e
−2rt

(
k̃2

∫
|x|≤1

|x|2ν( dx) + k̃2

∫
|x|>1

(e2x + 1)ν( dx)

)
dt]

= k̃2

(∫
|x|≤1

|x|2ν( dx) +

∫
|x|>1

(e2x + 1)ν( dx)

)
E[

∫ T

0

S2
t−e
−2rt dt]

= k̃2

(∫
R

1 ∧ |x|2ν( dx) +

∫
|x|>1

e2xν( dx)

)∫ T

0

E[S2
t− ]e−2rt dt <∞.

Then
∫ t

0
e−rt

∫
R(C(t, St−e

x)− C(t, St−))J̃X (dt, dx) is a square integrable martingale.

It remains to prove that
∫ T

0
e−rt ∂C

∂S
(t, St−)σSt− dWt is also a martingale, such that Mt

is a martingale.

E[

∫ T

0

e−2rt(
∂C

∂S
(t, St−)σSt−)2 dt] ≤ E[

∫ T

0

e−2rt

∥∥∥∥∂C∂S (t, St−)

∥∥∥∥2

L∞
σ2S2

t− dt]

≤ c2σ2

∫ T

0

e−2rtE[S2
t− ] dt <∞,
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because if C is Lipschitz, then ∂C
∂S

(t, St−) ∈ L∞.
The condition (3.22) holds for all jump-diffusion models with Brownian component

or for processes with Lévy densities with behavior near zero as ν(x) ∼ c
x1+β with β > 0.

This condition is not satisfied for the Generalized Hyperbolic model or in particular for
the Variance Gamma model. Note also that when ν = 0 then we obtain the well known
Black-Scholes PDE. The next example shows that if we do not impose any conditions on
a given Lévy triplet, then the function that represents the price of a binary option is not
smooth.

Example 3.3.1 Consider the Generalized Hyperbolic model and for simplicity assume
δ = 0. Then the density function becomes

pt(x) = C|x− µ|
t
κ
− 1

2K| t
κ
− 1

2
|(α|x− µ|)eβ(x−µ).

Notice that, when

z → 0 , Kv(z) ∼ 1

2
Γ(v)(

z

2
)−v ⇒

lim
x→µ

p(t, x) = lim
x→µ

C|x− µ|
t
κ
− 1

2K| t
k
− 1

2
|(α|x− µ|)eβ(x−µ)

= lim
x→µ

C|x− µ|
t
κ
− 1

2
−| t

κ
− 1

2
|1

2
Γ(
t

κ
− 1

2
)eβ(x−µ) =∞

if and only if
t

κ
− 1

2
− | t

κ
− 1

2
| < 0⇔ 2(

t

κ
− 1

2
) < 0.

Then we conclude that p(t, x) is locally unbounded at x = µ if t < κ
2
.

If 0 <
t

κ
− 1

2
− | t

κ
− 1

2
| < 1 , then p(t, x) ∈ C0 but not in C1.

If 0 <
t

κ
− 1

2
− | t

κ
− 1

2
| < 1 or 1 < 2

t

κ
< 2 , then p(t, x) ∈ C0 but not in C1.

If 1 <
t

κ
− 1

2
− | t

κ
− 1

2
| < 2 or 2 < 2

t

κ
< 3 , then p(t, x) ∈ C1 but not in C2.

So by recurrence we conclude that

if p− 1 <
t

κ
− 1

2
− | t

κ
− 1

2
| < p or p < 2

t

κ
< p+ 1 , then p(t, x) ∈ Cp−1 but not in Cp.

So if t ∈ (pκ
2
, (p+1)κ

2
) then p(t, x) belongs to Cp−1(R) but not in Cp(R) and for t < κ

2
,

p(t, .) is locally unbounded.
Consider a binary option whose payoff function is given by h(x) = 1x≥l0. Its price is

given by

C(t, S) = e−r(T−t)E[H(ST )|St = S] = e−r(T−t)E[h(x+ r(T − t) +XT−t)]

= e−r(T−t)E[1x+r(T−t)+XT−t≥l0 ] = e−r(T−t)Q[x+ r(T − t) +XT−t ≥ l0]

= e−r(T−t)Q[XT−t ≥ l0 − r(T − t)− x] =

∫ ∞
d

p(t, x) dx,

where d = l0 − r(T − t) − x. Then for t < k
2

the binary option is continuous but is not
differentiable.
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Figure 3.2: The price of a binary option is not differentiable at the money, using the
Monte Carlo method, when µ = 0 with κ = 2, r = 0, σ = 0.25, θ = −0.1. Blue: T = 0.1,
red: T = 0.5, yellow: T = 1.

3.3.2 Barrier Options

We now present the result without proof, analogous to Proposition 3.3.3. It tells us that
the price function of a barrier option is smooth enough if and only if it satisfies a PIDE.
For a full detailed proof of this proposition, see [83].

Proposition 3.3.4 Consider St = S0e
rt+Xt where the Lévy process X verifies (3.20).

Let θt = inf {s ≥ t|St /∈ (L,U)} where 0 ≤ L < U ≤ ∞ and suppose that H ≥ 0 and
∃N > 0 : H(S) ≤ N(1 + S). Define

Cb(t, S) = e−r(T−t)E[H(ST )1T<θt |St = S], (3.27)

as the value of a knock-out option, where Cb(t, S) ∈ C1,2([0, T )× (L,U)). Then it satisfies
the integro-differential equation:

∂Cb
∂t

(t, S) + rS
∂Cb
∂S

(t, S) +
σ2S2

2

∂2Cb
∂S2

(t, S)− rCb (t, S) +

+

∫ [
Cb (t, Sey)− Cb (t, S)− S (ey − 1)

∂Cb
∂S

(t, S)

]
ν ( dy) = 0; (3.28)

on [0, T )× (L,U) with the conditions:

Cb (T, S) = H (S) ∀S ∈ (L,U), (3.29)

Cb (t, S) = 0 ∀S /∈ (L,U). (3.30)

Conversely, every solution of (3.28) − (3.30) belonging to C1,2([0, T ) × (L,U)) has the
stochastic representation given by (3.27).
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Before we study the continuity of barrier option prices we will need the definition of
first passage process: Let {Yt} be a Lévy process defined by Yt = rt + Xt. Finally set
Mt = sup0≤s≤t Ys. Following the notation of Sato [72], we define

Rx = inf {s ≥ 0|Ys > x} , R−x = inf {s ≥ 0| − Ys > x} ,

R
′′

x = inf {s ≥ 0|Ys ∨ Ys− ≥ x} .

We know that {Rx, x ≥ 0} is a process with non-decreasing paths, so we can define
Rx−(ω) = limε→0Rx−ε(ω). As for the right continuity, since Yt is right-continuous, Rx is
also right-continuous. Following the terminology of Voltchkova:

Definition 3.3.2 Consider a Lévy process Yt with triplet (σ, γ, ν).
If σ = 0 and ν(R) <∞, then Yt is of type A (Compound Poisson).
If σ = 0, ν(R) = ∞ and

∫
|x|≤1
|x|ν( dx) < ∞, then Yt is of type B (finite varia-

tion,infinite activity).
If σ > 0 or

∫
|x|≤1
|x|ν( dx) =∞, then Yt is of type C (infinite variation) .

In order to prove the continuity of barrier option prices we need some properties of
the process {Rx}.

The first lemma is an extension of the Lemma 3.5.3 presented in [83], in the sense
that also applies to Lévy processes of type A. The second and third lemmas are presented
in [83].

Lemma 3.3.3 If {Yt} is of type B or C or A with γ 6= 0 then:

∀x > 0,Q[Rx− = Rx] = 1. (3.31)

Proof.
Introducing

Ω1 = {ω ∈ Ω : Rx− < Rx} ,Ω2 =
{
ω ∈ Ω : R

′′

x = Rx

}
.

Define Rx′ = inf {s ≥ 0|Ys ≥ x}. By Lemma 49.6 of [72] we have that, for any x >
0,P[Rx = Rx′ = R

′′
x] = 1, because Yt is non zero and is not Compound Poisson process,

which means that is of type B or C or A with γ 6= 0. Then Q[Ω2] = 1. In order that,
Q[Rx− = Rx] = 1 we must have Q[Ω1] = 0, because we always have Rx− ≤ Rx. So we
have to prove that Q[Rx− < Rx] = Q[Rx− < R

′′
x] = Q[Ω1 ∩ Ω2] = 0.

By contradiction, suppose that ∃ω ∈ Ω1 ∩ Ω2 ⇒ ω ∈ Ω1, ω ∈ Ω2.Then,

∃u≥ 0, Rx− = u, (3.32)

∃u< t, t = R
′′

x. (3.33)

By definition of Rx− = limε→0, Rx−ε and because Rx− = u we get

∀δ>0,∃η>0 : |ε| < η ⇒ u− δ < Rx−ε < u+ δ.
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∀ε>0,∀δ>0, ∃s < u+ δ : Ys > x− ε.

Now, choose εn = δn = 1
n
→ 0.Then,

∃sn∀n : sn < u+
1

n
, Ysn > x− 1

n
.

Because {sn} is bounded, there is a convergent subsequence snk ↑ s0 with s0 ≤ u < t.
This means that

Ysn > x− 1

n
⇒ Ys−0 ≥ x,

and if snk ↓ s0 with s0 ≤ u < t, then

Ysn > x− 1

n
⇒ Ys0 ≥ x.

Then, Ys−0 ∨ Ys0 ≥ x. But this contradicts (3.33) because it implies that ∀s < t,

Ys− ∨ Ys < x. Then Ω1 ∩ Ω2 = ∅.

Lemma 3.3.4 If {Yt} is of type B with R0 = 0 a.s or of type C, then:

∀x > 0,∀t ≥ 0,Q[Rx = t] = 0. (3.34)

Lemma 3.3.5 If {Yt} is of type B or C, then ∀x > 0, ∀t ≥ 0 :

Q[Rx ≤ t < Rx+ε]→ 0, (3.35)

Q[Rx−ε ≤ t < Rx]→ 0, (3.36)

when ε→ 0.If we have also R0 = 0 a.s, then (3.35) is satisfied for x = 0, t > 0.

The next proposition shows that the up-and-out option is continuous. The sketched
proof of this proposition is shown in [83] and a more detailed version is shown in the
appendix.

Proposition 3.3.5 Let Yt be of type B or C with R0 = 0 a.s. Suppose that H : (0, U)→
[0,∞) is Lipschitz:

∀S1, S2 ∈ (0, U), |H(S1)−H(S2)| ≤ k|S1 − S2|, (3.37)

for some k > 0 and let u = log( U
S0

). Then the function fU(τ, x) defined by

fU (τ, x) =

{
E
[
H
(
S0e

x+Yτ
)

1τ<Ru−x
]

if x < u,
0 if x ≥ u,

(3.38)

is continuous on (0, T ]× R.

The following proposition gives the continuity result for the case of a down-and-out
option. The proof of this proposition, similar to the previous one, can be found in [83].
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Proposition 3.3.6 Let Yt be of type B or C with R0− = 0 a.s. Suppose that H :
(L,∞)→ [0,∞) is Lipschitz:

∀S1, S2 ∈ (0, U), |H(S1)−H(S2)| ≤ k|S1 − S2|, (3.39)

with L < S0 and let l = log( L
S0

). Then the function fL(τ, x) defined by

fL (τ, x) =

{
E
[
H
(
S0e

x+Yτ
)

1τ<R−x−l

]
if x > l,

0 if x ≤ l,
(3.40)

is continuous on (0, T ]× R.

Finally the continuity result of a double-barrier option with payoffH(ST )1T<inf{t≥0,St∈(L,U)},
where L < S0 < U , u = log( U

S0
) and l = log( L

S0
) is presented here without proof and can

be found in [83].

Proposition 3.3.7 Let Yt be of type B or C with R0− = 0 and R0 = 0 a.s. Suppose that
H : (L,∞)→ [0,∞) is Lipschitz:

∀S1, S2 ∈ (0, U), |H(S1)−H(S2)| ≤ k|S1 − S2|, (3.41)

with k > 0.Then the function fD(τ, x) defined by

fD (τ, x) =

{
E
[
H
(
S0e

x+Yτ
)

1τ<R−x−l∩Ru−x

]
if x ∈ (l, u),

0 if x /∈ (l, u),
(3.42)

is continuous on (0, T ]× R.

The results for the continuity of a up-and-out option and a down-and-out option are
proven here when the Lévy process is of type A.

Proposition 3.3.8 Suppose {Yt} is a Lévy process of type A with γ 6= 0, R0 = 0 a.s and
Q[Rx = t] = 0,∀x ≥ 0, t ≥ 0, (t, x) 6= (0, 0). Suppose that H:(0, U) → (0,∞) is Lipschitz.
Then for every τ sufficiently small fu(τ, x) defined by

fu (τ, x) =

{
E
[
H
(
S0e

x+Yτ
)

1τ<Ru−x
]

if x < u,
0 if x ≥ u,

is continuous.

Proof. Considering τ > 0 and x = u, we have by definition,

|fu (τ, u− ε)− fu (τ, u)| = E
[
H
(
S0e

u−ε+Yτ
)

1τ<Rε
]
≤ME [1τ<Rε ] = MQ [τ < Rε] .

Let {εn} → 0 and Ωn = {ω ∈ Ω : τ < Rεn} , then {Ωn} is a decreasing sequence:
Ω1 ⊃ Ω2 ⊃ ...Ωn ⊃ ..., because Rx is an increasing process. Then

lim
n→∞

Q [τ < Rεn ] = Q [∩∞n=1Ωn] = Q [τ < R0] = 0,
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because R0 = 0 a.s.
For τ > 0 and x < u:

|fu (τ, x+ ε)− fu (τ, x)| = |E
[
H
(
S0e

x+ε+Yτ
)

1τ<Ru−x−ε ]− E[H
(
S0e

x+Yτ
)

1τ<Ru−x
]
|

= |E[H(S0e
x+ε+Yτ )−H(S0e

x+Yτ ))1τ<Ru−x−ε
+H(S0e

x+Yτ )(1τ<Ru−x−ε − 1τ<Ru−x)]|
≤ cS0e

x+rτE[eYτ ]|eε − 1|+MQ[Ru−x−ε ≤ τ < Ru−x]

But, |eε − 1| → 0 as ε→ 0 and

Q[Ru−x−ε ≤ τ < Ru−x]→ Q[R(u−x)− ≤ τ < Ru−x] ≤ Q[R(u−x)− 6= Ru−x] = 0, (3.43)

because of lemma (3.3.3). In a similar way:

|fu (τ, x− ε)− fu (τ, x)| = |E
[
H
(
S0e

x−ε+Yτ
)

1τ<Ru−x+ε ]− E[H
(
S0e

x+Yτ
)

1τ<Ru−x
]
|

≤ cS0e
x+rτ |1− e−ε|+MQ[Ru−x ≤ τ < Ru−x+ε]→ 0,

because |1− e−ε| → 0 as ε→ 0, and

Q[Ru−x ≤ τ < Ru−x+ε]→ Q[Ru−x = τ ] = 0. (3.44)

The continuity in time is proven in the same way as in the proof of Proposition 3.3.5 (see
the Appendix). Finally, using the triangular inequality we can prove continuity for all
(τ, x) ∈ [0, T ]× (−∞, u).

Proposition 3.3.9 Suppose {Yt} is a Lévy process of type A with γ 6= 0, R−0 = 0 a.s and
Q[R−x = t] = 0,∀x ≥ 0, t ≥ 0, (t, x) 6= (0, 0).Suppose that H:(L,∞) → (0,∞) is Lipschitz.
Then, for every τ sufficiently small fl(τ, x) defined by

fl (τ, x) =

{
E
[
H
(
S0e

x+Yτ
)

1τ<R−x−l

]
if x > l,

0 if x ≤ l,

is continuous.

Proof. Considering τ > 0 and by definition of the price of a down-and-out option,

|fl (τ, l + ε)− fl (τ, l)| = E
[
H
(
S0e

l+ε+Yτ
)

1τ<R−ε
]

≤ CE
[(

1 + S0e
l+ε+Yτ

)
1τ<R−ε

]
= CQ

[
τ < R−ε

]
+ CS0e

l+εE
[
eYτ1τ<R−ε

]
.

Let {εn} → 0 and Ωn =
{
ω ∈ Ω : τ < R−εn

}
, then {Ωn} is a decreasing sequence: Ω1 ⊃

Ω2 ⊃ ...Ωn ⊃ ..., because R−x is an increasing process. Then,

lim
n→∞

Q
[
τ < R−εn

]
= Q [∩∞n=1Ωn] = Q

[
τ < R−0

]
= 0
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because R−0 = 0 a.s. Then, Q [τ < R−ε ]→ 0 as ε→ 0.
The quantity eYτ1τ<R−ε is bounded by an integrable variable eYτ that is, eYτ1τ<R−ε ≤ eYτ

and converges in probability to zero because, ∀ δ > 0,

Q
[
eYτ1τ<R−ε > δ

]
≤ Q

[
τ < R−ε

]
.

Then, by dominated convergence theorem,

lim
ε→0

E
[
eYτ1τ<R−ε

]
= lim

ε→0

∫
Ω

eYτ1τ<R−ε dQ = 0. (3.45)

Then, E
[
eYτ1τ<R−ε

]
→ 0 as ε→ 0. This means that fl (τ, x) is continuous in x = l. The

proof for all (τ, x), follows the same steps of the proof of Proposition 3.5.9 in [83].
The following set of propositions show the discontinuity of up-and-out option and

down-and-out option when the Lévy process is of type A.

Proposition 3.3.10 Let {Yt} be a Lévy process of type A with R0 > 0 a.s. Suppose that
H:(0, U) → (0,∞) is Lipschitz.Then for every τ sufficiently small fu(τ, x) defined by

fu (τ, x) =

{
E
[
H
(
S0e

x+Yτ
)

1τ<Ru−x
]

if x < u,
0 if x ≥ u,

is discontinuous in x=u.

Proof. Considering τ > 0, we have by definition

|fu (τ, u− ε)− fu (τ, u)| = E
[
H
(
S0e

u−ε+Yτ
)

1τ<Rε
]
≤ME [1τ<Rε ] = MQ [τ < Rε] .

Let {εn} → 0 and Ωn = {ω ∈ Ω : τ < Rεn}, then {Ωn} is a decreasing sequence, i.e
Ω1 ⊃ Ω2 ⊃ ...Ωn ⊃ ..., because Rx is an increasing process. Then,

lim
n→∞

Q [τ < Rεn ] = Q [∩∞n=1Ωn] = Q [τ < R0] = Q [Yτ ≤ 0] > 0,

because {Yt} is a pure jump Lévy process. For τ = 0

|fu (0, u− ε)− fu (0, u)| = E
[
H
(
S0e

u−ε+Y0
)

10<Rε

]
≤ME [10<Rε ] (3.46)

= MQ [0 < Rε]→MQ [0 < R0] = M > 0, (3.47)

as ε→ 0, because R0 > 0 a.s. Then fu (τ, x) is discontinuous at the barrier.

Proposition 3.3.11 Let {Yt} be a Lévy process of type A and R−0 > 0 almost surely.
Suppose that H:(L,∞) → (0,∞) is Lipschitz. Then for every τ sufficiently small fl(τ, x)
defined by

fl (τ, x) =

{
E
[
H
(
S0e

x+Yτ
)

1τ<R−x−l

]
if x > l,

0 if x ≤ l,

is discontinuous in x=l.



36
CHAPTER 3. INTEGRO-DIFFERENTIAL EQUATIONS FOR OPTION

PRICING

Proof. Considering τ > 0, we have by definition

|fl (τ, l + ε)− fl (τ, l)| = E
[
H
(
S0e

l+ε+Yτ
)

1τ<R−ε
]
≤ CE

[(
1 + S0e

l+ε+Yτ
)

1τ<R−ε
]

= CQ
[
τ < R−ε

]
+ CS0e

l+εE
[
eYτ1τ<R−ε

]
.

Let {εn} → 0 and Ωn =
{
ω ∈ Ω : τ < Rε−n

}
, then {Ωn} is a decreasing sequence ,that is

Ω1 ⊃ Ω2 ⊃ ...Ωn ⊃ ..., because Rx is an increasing process. Then

lim
n→∞

Q
[
τ < Rε−n

]
= Q [∩∞n=1Ωn] = Q

[
τ < R−0

]
> 0,

because by theorem 46.2 of Sato {Rx} is a pure jump lévy process. The quantity eYτ1τ<R−ε
is bounded by an integrable variable eYτ that is, eYτ1τ<R−ε ≤ eYτ but doesn’t converge in
probability to zero because ∀ δ > 0,

Q
[
eYτ1τ<R−ε > δ

]
≤ Q

[
τ < R−ε

]
> 0.

Then, by dominated convergence theorem,

lim
ε→0

E
[
eYτ1τ<R−ε

]
= lim

ε→0

∫
Ω

eYτ1τ<R−ε dQ (3.48)

=

∫
Ω

lim
ε→0

eYτ1τ<R−ε dQ =

∫
Ω

0 dQ > 0. (3.49)

Then,

|fl (τ, l + ε)− fl (τ, l)| → Q
[
τ < R−ε

]
+ CS0e

l+εE
[
eYτ1τ<R−0

]
> 0

as ε→ 0. Then fl (τ, x) is discontinuous at the barrier.
The next two examples show that if we do not impose any restriction on the Lévy

process, then the value of a knock-out option is discontinuous for t = 0:

Example 3.3.6 Let us consider the following lévy process Xt = N1
t −N2

t where N1
t and

N2
t are independent Poisson processes with jump intensities λ1 and λ2.

Assuming r = 0, we have λ2 = eλ1 in order for St = S0e
Xt to be a martingale. Con-

sider now a up and out option with payoff function H : (0, U)→ (0,∞) defined by HT =
1T<θ(S0), and θ (S) = inf

{
t ≥ 0 : S0e

Xt ≥ U
}

is the first exit time if the process starts
from S. We will show that the initial option value C (0, S) = E

[
H (ST ) 1T<θ(S0)|S0 = S

]
=

E
[
H
(
SeXT

)
1T<θ(S)

]
is not continuous at S∗ = U/e.

|C (0, S∗ + ε)− C (0, S∗ − ε)| =
∣∣E [1θ(S∗−ε)≤T<θ(S∗+ε)]∣∣ = Q [θ (S∗ − ε) ≤ T < θ (S∗ + ε)] .

Consider the following event {N1
T = 1, N2

T = 0} of non-zero probability. Then, if St starts
from S∗ − ε, then ST = (S∗ − ε) e1 =

(
U
e
− ε
)
e1 = U − εe1 < U , which means that

T ≥ θ (S∗ − ε) . On the other hand, if St starts from S∗ + ε, then ST = (S∗ + ε) e−1 =(
U
e

+ ε
)
e1 = U + εe1 > U , implying T < θ (S∗ + ε). Because {N1

T = 1, N2
T = 0} is a

possible realization of the trajectory of Xt, we have:
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{ω ∈ Ω : N1
T = 0, N2

T = 1} ⊂ {ω ∈ Ω : θ (S∗ − ε) ≤ T < θ (S∗ + ε)} . Then,

|C (0, S∗ + ε)− C (0, S∗ − ε)| = Q [θ (S∗ − ε) ≤ T < θ (S∗ + ε)]

≥ Q
[
N1
T = 1, N2

T = 0
]

= e−Tλ1Tλ1e
−Tλ2 > 0

Thus, C (0, S) is discontinuous at S = S∗.

Example 3.3.7 Let us consider the following Lévy process Xt = N1
t − N2

t , where N1
t

and N2
t are independent Poisson processes with jump intensities λ1 and λ2. Assum-

ing r = 0, we have λ2 = eλ1 in order for St = S0e
Xt to be a martingale. Con-

sider now a knock-out option with a payoff function defined by HT = 1T<θ(S0), where
θ (S) = inf

{
t ≥ 0 : S0e

Xt ≤ L
}

is the first exit time if the process starts from S. We
will show that the initial option value C (0, S) = E

[
1T<θ(S0)|S0 = S

]
= E

[
1T<θ(S)

]
is not

continuous at S∗ = Le. Let 0 < ε < S∗−L, so that L = L−S∗+S∗ < S∗−ε < S∗ < S∗+ε.

|C (0, S∗ + ε)− C (0, S∗ − ε)| =
∣∣E [1θ(S∗−ε)≤T<θ(S∗+ε)]∣∣ = Q [θ (S∗ − ε) ≤ T < θ (S∗ + ε)] .

Consider the following event {N1
T = 0, N2

T = 1} of non-zero probability. Then, if St starts
from S∗ − ε, then ST = (S∗ − ε) e−1 = (Le− ε) e−1 = L − εe−1 < L, which means that
T ≥ θ (S∗ − ε) . On the other hand, if St starts from S∗ + ε, then ST = (S∗ + ε) e−1 =
(Le+ ε) e−1 = L + εe−1 > L, implying T < θ (S∗ + ε). Because {N1

T = 0, N2
T = 1} is a

possible realization of the trajectory of Xt, we have:
{ω ∈ Ω : N1

T = 0, N2
T = 1} ⊂ {ω ∈ Ω : θ (S∗ − ε) ≤ T < θ (S∗ + ε)} . Then,

|C (0, S∗ + ε)− C (0, S∗ − ε)| = Q [θ (S∗ − ε) ≤ T < θ (S∗ + ε)]

≥ Q
[
N1
T = 0, N2

T = 1
]

= e−Tλ1Tλ2e
−Tλ2

= e−Tλ1(1+e)Tλ2 > 0.

Thus, C (0, S) is discontinuous at S = S∗.

3.4 Option Pricing using Fourier Transform methods

An European call option on some asset St with a given maturity T and exercise price K,
gives its holder the right but not the obligation to buy the asset at date T for a fixed price.
Since the holder of the option will only exercise if the actual price of the asset is higher
we know that the holder receives then the difference between the fixed amount paid K
and the amount received for selling immediately the asset , i.e (ST −K)+. Similarly the
holder of a Put option receives (K − ST )+.

We can consider a more general contract, the European option, which gives the holder
the right but not the obligation to receive Φ(ST ) at maturity T . It is well known that
(see [24]) if Φ is convex, Φ′ is its left derivative and κ the second derivative in the sense
of distributions, then

Φ(ST ) = Φ(0) + Φ′(0)ST +

∫ ∞
0

(ST −K)+ κ( dK). (3.50)
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This result shows that we can express any European option’s payoff in terms of call option
payoffs and also shows that we can value more complex European options by knowing
call options payoffs. This is true for example for butterfly spreads and straddle options
which are linear combinations of a finite number of call or put options.

We already know that the price of an European call option can be represented as the
risk-neutral conditional expectation of a certain payoff:

V (t, St)= e−r(T−t)E
[
(ST −K)+ |Ft

]
= e−r(T−t)E

[(
Ste

r(T−t)+XT−t −K
)+ |St = S

]
= e−rτE

[(
Serτ+Xτ −K

)+
]

= e−rτE
[(
Kerτ+w+Xτ −K

)+
]

= e−rτKE
[(
erτ+w+Xτ − 1

)+
]
, (3.51)

since a Lévy process has independent and stationary increments, due to the Markov
property and making the transformation w = ln( S

K
).

Finally we can define the forward relative call option’s price in terms of log-moneyness
x and the time until maturity τ

u(τ, x)= erτ
V (t, St)

K
(3.52)

= E
[(
erτ+w+Xτ − 1

)+
]
, (3.53)

where V (t, St) is given by (3.51). We will now see how to price an option using Fourier
transform methods in an exponential Lévy model. Remember the definition of Fourier
transform of a function f :

Ff(u) =

∫
R
eixuf(x) dx. (3.54)

We can also define the inverse Fourier transform by

F−1f(x) =
1

2π

∫
R
e−ixuf(u) du. (3.55)

Note that for f ∈ L2(R), F−1Ff = f . We will follow the method of Carr and Madan
because it is easier to implement than Lewis’s method but it has lower convergence. As
it was done in [25], we set S0 = 1, κ = ln(K). It is assumed that the stock price has
moments of order 1 + α for some α > 0

∃α > 0 :

∫
|y|>1

e(1+α)yν( dy) <∞. (3.56)
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Now we would like to compute

V (0, S0)= e−rTE
[(
erT+XT − eκ

)+
]
, (3.57)

and so we define it as a function of κ

V (κ)= e−rTE
[(
erT+XT − eκ

)+
]

(3.58)

= e−rT
∫ ∞
κ−rT

erT+x − eκν( dx). (3.59)

A natural idea seems to compute its Fourier Transform

FV (u)=

∫
R
eiκuV (κ) dκ. (3.60)

However, we see from (3.59) that V (κ) tends to a constant and so (3.60) is not integrable.
So the idea is to define the time-value of the option

z(κ)= e−rTE
[(
erT+XT − eκ

)+
]
−
(
1− eκ−rT

)+
(3.61)

and compute its Fourier transform

ζ(u) = Fz(u)=

∫
R
eiκuz(κ) dκ. (3.62)

So note that

z(κ)= e−rTE
[(
erT+XT − eκ

)+
]
−
(
1− eκ−rT

)+
(3.63)

= e−rT
∫ ∞
−∞

(
erT+x − eκ

)
(1κ≤rT+x − 1κ≤rT ) p( dx). (3.64)

Then, since now the integrand is integrable we can change the order of integration
and get

ζ(u)=

∫
R
eiκuz(κ) dκ

=

∫
R
eiκue−rT

∫ ∞
−∞

(
erT+x − eκ

)
(1κ≤rT+x − 1κ≤rT ) p(x) dx dκ

=

∫
R
p(x)

∫ ∞
−∞

eiκue−rT
(
erT+x − eκ

)
(1κ≤rT+x − 1κ≤rT ) dκ dx

=

∫
R
p(x)

∫ rT+x

rT

eiκue−rT
(
erT+x − eκ

)
dκ dx.
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Observe that∫ rT+x

rT

eiκue−rT
(
erT+x − eκ

)
dκ=

∫ rT+x

rT

eiκu+x − eiκ+κ−rT dκ

=

[
eiκu+x

iu
− eiκu+κ−rT

iu+ 1

]rT+x

rT

=
eiurT (1− ex)

iu+ 1
− eiurT+x

iu(iu+ 1)
+
eiurT+ixu+x

iu(iu+ 1)
.

Now notice that since E
[
eXτ
]

= 1, we have

ζ(u)=

∫
R
p(x)

(
− eiurT+x

iu(iu+ 1)
+
eiurT+ixu+x

iu(iu+ 1)

)
dx

=
eiurT

iu(iu+ 1)

∫
R
p(x)ex

(
eixu − 1

)
dx

=
eiurT

iu(iu+ 1)

(∫
R
p(x)ex(1+iu) dx− 1

)
=

eiurT

iu(iu+ 1)

(∫
R
p(x)ex(−i2+iu) dx− 1

)
=

eiurT

iu(iu+ 1)

(∫
R
p(x)exi(u−i) dx− 1

)
=

eiurT

iu(iu+ 1)
(Ψ(u− i)− 1) , (3.65)

where Ψ(u) is the characteristic function of Xt.
If u→ 0 then we see that since when u = 0, Ψ(u− i) = 1 by the martingale condition.

Also we see that by (3.56), Ψ(u− i) is analytic then

lim
u→0

∫
R
p(x)exi(u−i) dx =

∫
R
p(x)ex dx = 1, (3.66)

lim
u→0

∫
R
p(x)xiexi(u−i) dx = ai, (3.67)

for some a ∈ R.
We conclude that

lim
u→0

eiurT

iu(iu+ 1)
(Ψ(u− i)− 1) = lim

u→0

irTeiurT (Ψ(u− i)− 1) + eiurTΨ′(u− i)
−2u+ i

= k

= lim
u→0

irTeiurT (Ψ(u− i)− 1) + eiurTai

−2u+ i
= a <∞.

Then we can find the option price by inverting the Fourier Transform ζ(u) :

z(κ) =
1

2π

∫
R
e−iκuζ(u) du. (3.68)
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In order to compute numerically this integral we resort to the discrete inverse Fourier
transform which implies discretizing and truncating the integral in the following manner

z(κ) ≈ 1

2π

∫ A
2

−A
2

e−iκuζ(u) du ≈ A

2πN

N−1∑
k=0

ωke
−iκxkζ(xk), (3.69)

where xk = −A
2

+ kh, h = A
N−1

is the discretization step and ωk = k
h
.

3.5 Modelling the feedback effects with jump process

This section is devoted to derivation of the novel option pricing model taking into account
feedback effects of a large trader on the underlying asset following a jump-diffusion Lévy
process. We show that the price of an option can be computed from a solution to a fully
nonlinear partial integro-differential equation (PIDE) (2.19). We also derive a formula
for the trading strategy function φ which minimizes the variance of the tracking error.
Let us suppose that a large trader uses a stock-holding strategy αt and St is a cadlag
process (right continuous with limits to the left). Henceforth, we shall identify St with
St− . We assume St has the following dynamics:

dSt = µSt dt+ σSt dWt + ρSt dαt +

∫
R
St(e

x − 1)JX( dt, dx). (3.70)

It can be viewed as a perturbation of the classical jump-diffusion model. Indeed, if a
large trader does not trade then αt = 0 or the market liquidity parameter ρ is set to zero
then the stock price St follows the classical jump-diffusion model.

In what follows, we will assume the following structural hypothesis:

Assumption 3.5.1 Assume the trading strategy αt = φ(t, St) and the parameter ρ ≥ 0
satisfy ρL < 1, where L = supS>0 |S ∂φ

∂S
|.

Next we show an explicit formula for the dynamics of St satisfying (3.70) under certain
regularity assumptions made on the stock-holding function φ(t, S).

Proposition 3.5.1 Suppose that the stock-holding strategy αt = φ(t, St) satisfies As-
sumption 3.5.1 where φ ∈ C1,2([0, T ]×R+). If the process St, t ≥ 0, satisfies the implicit
stochastic equation (3.70) then the process St satisfies the following SDE:

dSt = b(t, St)St dt+ v(t, St)St dWt +

∫
R
H(t, x, St)JX( dt, dx), (3.71)

where

b(t, S) =
1

1− ρS ∂φ
∂S

(t, S)

(
µ+ ρ

(
∂φ

∂t
+

1

2
v(t, S)2S2 ∂

2φ

∂S2

))
, (3.72)

v(t, S) =
σ

1− ρS ∂φ
∂S

(t, S)
, (3.73)

H(t, x, S) = S(ex − 1) + ρS [φ(t, S +H(t, x, S))− φ(t, S)] . (3.74)
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Proof. We can rewrite the SDE (3.71) for St, in the following way:

dSt =

(
b(t, St)St +

∫
|x|<1

H(t, x, St)ν( dx)

)
dt+ v(t, St)St dWt

+

∫
|x|≥1

H(t, x, St)JX( dt, dx) +

∫
|x|<1

H(t, x, St)J̃X( dt, dx).

Since φ(t, S) is assumed to be a smooth function then, by applying Itô formula (2.35) to
the process φ(t, St), we obtain

dαt =

(
∂φ

∂t
+

1

2
v(t, St)

2S2
t

∂2φ

∂S2

)
dt+

∂φ

∂S
dSt (3.75)

+

∫
R
φ(t, St +H(t, x, St))− φ(t, St)−H(t, x, St)

∂φ

∂S
(t, St)JX( dt, dx).

Now, inserting the differential dαt into (3.70), we obtain

dSt = µSt dt+ σSt dWt +

∫
R
St(e

x − 1)JX( dt, dx) + ρSt
∂φ

∂S
dSt

+ρSt

(
∂φ

∂t
+

1

2
v(t, St)

2S2
t

∂2φ

∂S2

)
dt (3.76)

+ρSt

∫
R
φ(t, St +H(t, x, St))− φ(t, St)−H(t, x, St)

∂φ

∂S
(t, St)JX( dt, dx).

Rearranging terms in (3.76) we conclude

(1− ρSt
∂φ

∂S
(t, St)) dSt = (µSt + ρSt(

∂φ

∂t
+

1

2
v(t, St)

2S2
t

∂2φ

∂S2
)) dt

+σSt dWt − ρSt
∫
R
H(t, x, St)

∂φ

∂S
(t, St)JX( dt, dx) (3.77)

+

∫
R
St(e

x − 1) + ρSt (φ(t, St +H(t, x, St))− φ(t, St)) JX( dt, dx).

Comparing terms in (3.71) and (3.77) we end up with expressions (3.72), (3.73), and the
implicit equation for the function H:

H(t, x, S) =
1

1− ρS ∂φ
∂S

(t, S)
(S(ex − 1) + ρS (φ(t, S +H(t, x, S))− φ(t, S)))

− 1

1− ρS ∂φ
∂S

(t, S)
ρS

∂φ

∂S
(t, S)H(t, x, S). (3.78)

Simplifying this expression for H we conclude (3.74), as claimed.
The function H is given implicitly by equation (3.74). If we expand its solution H

in terms of a small parameter ρ, i.e. H(t, x, S) = H0(t, x, S) + ρH1(t, x, S) + O(ρ2) as
ρ→ 0, we conclude the following proposition:
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Proposition 3.5.2 Assume ρ is small. Then the first order approximation of the func-
tion H(t, x, S) reads as follows:

H(t, x, S) = S(ex − 1) + ρS (φ(t, Sex)− φ(t, S)) +O(ρ2) as ρ→ 0. (3.79)

Proposition 3.5.3 Assume that the asset price process St = eXt+rt fulfills SDE (3.71)
where the Lévy measure ν is such that

∫
|x|≥1

e2xν ( dx) <∞. Denote by V (t, S) the price

of a derivative security given by

V (t, S) = E
[
e−r(T−t)Φ(ST )|St = S

]
= e−r(T−t)E

[
Φ(Ser(T−t)+XT−t)

]
. (3.80)

Assume that the pay-off function Φ is a Lipschitz continuous function and the function
φ has a bounded derivative. Then V (t, S) is a solution to the PIDE:

∂V

∂t
+

1

2
v(t, S)2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV

+

∫
R
V (t, S +H(t, x, S))− V (t, S)−H(t, x, S)

∂V

∂S
(t, S)ν( dx) = 0, (3.81)

where v(t, S) and H(t, x, S) are given by (3.73) and (3.74), respectively.

Proof. The asset price dynamics of St under the Q measure is given by

dSt = rSt dt+ v(t, St)St dWt +

∫
R
H(t, x, St)J̃X( dt, dx). (3.82)

If we apply Itô’s lemma to V (t, St) we obtain d(V (t, St)e
−rt) = a(t) dt+ dMt where

a(t) =
∂V

∂t
+

1

2
v(t, St)

2S2
t

∂2V

∂S2
+ rSt

∂V

∂S
− rV

+

∫
R
V (t, St +H(t, x, St))− V (t, St)−H(t, x, St)

∂V

∂S
(t, St)ν( dx),

dMt = e−rtStv(t, St)
∂V

∂S
dWt + e−rt

∫
R
V (t, St +H(t, x, St))− V (t, St)J̃X( dt, dx).

Our goal is to show that Mt is a martingale. Consequently, we have a ≡ 0 a.s., and V is
a solution to (3.81) (see Proposition 8.9 of [24]). To prove the term

∫ T
0
e−rt

∫
R V (t, St +

H(t, x, St))− V (t, St)J̃S( dt, dy) is a martingale it is sufficient to show that

E

[∫ T

0

e−2rt

(∫
R
V (t, St +H(t, x, St))− V (t, St)ν( dx)

)2

dt

]
<∞. (3.83)

Since sup0≤t≤T E
[
eXT−t

]
<∞ and the pay-off function Φ is Lipschitz continuous, V (t, S)

is Lipschitz continuous as well with some Lipschitz constant C > 0. As the function
φ(t, S) has bounded derivatives we obtain

S |φ(t, S +H(t, x, S))− φ(t, S)| ≤ S

∣∣∣∣∂φ∂S
∣∣∣∣ |H(t, x, S)| ≤ L|H(t, x, S)|
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(see Assumption 3.5.1). Since H(t, x, S) = S(ex − 1) + ρS(φ(t, S +H(t, x, S))− φ(t, S))
we obtain |H(t, x, S)|2 ≤ S2(ex − 1)2/(1 − ρL)2. As V is Lipschitz continuous with the
Lipschitz constant C > 0 we have

E

[∫ T

0

e−2rt

(∫
R
V (t, St +H(t, x, St))− V (t, St)ν( dx)

)2

dt

]

≤ C2

(1− ρL)2
E
[∫ T

0

∫
R
e−2rt|St|2(ex − 1)2ν( dx) dt

]
<∞,

because supt∈[0,T ] E [S2
t ] <∞. Here C0 =

∫
R(ex − 1)2ν( dx) <∞ due to the assumptions

made on the measure ν. It remains to prove that
∫ T

0
e−rtStv(t, St)

∂V
∂S

(t, St) dWt is a

martingale. Since S ∂φ
∂S

(t, S) is assumed to be bounded we obtain

0 < v(t, S) =
σ

1− ρS ∂φ
∂S

(t, S)
≤ σ

1− ρL
≡ C1 <∞.

Therefore E[
∫ T

0
e−2rt(∂V

∂S
(t, St)v(t, St)St)

2 dt] ≤ C2C2
1

∫ T
0
e−2rtE[S2

t ] dt < ∞ because St is
a martingale. Hence Mt is a martingale as well. As a consequence, a ≡ 0 and so V is a
solution to PIDE (3.81), as claimed.

Remark 2 If ρ = 0 then H(t, x, S) = S(ex − 1) and equation (3.81) reduces to:

∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV +

∫
R
V (t, Sex)− V (t, S)− S(ex − 1)

∂V

∂S
(t, S)ν( dx) = 0,

(3.84)
which is the well-known classical PIDE. If there are no jumps (ν = 0) and a trader follows
the delta hedging strategy, i.e. φ(t, S) = ∂SV (t, S), then equation (3.81) reduces to the
Frey–Stremme option pricing model:

∂V

∂t
+

1

2

σ2

(1− %S∂2
SV )

2S
2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (3.85)

(cf. [36]). Finally, if ρ = 0 and ν = 0 equation (3.81) reduces to the classical linear
Black–Scholes equation.

For simplicity, we assume the interest rate is zero, r = 0. Then the function V (t, S)
is a solution to the PIDE:

∂V

∂t
+

1

2
v(t, S)2S2∂

2V

∂S2

+

∫
R
V (t, S +H(t, x, S))− V (t, S)−H(t, x, S)

∂V

∂S
(t, S)ν( dx) = 0. (3.86)

Let us define the tracking error of a trading strategy αt = φ(t, St) as follows: eMT :=

Φ(ST )− V0 = V (T, ST )− V0 −
∫ T

0
αt dSt.
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By applying Itô’s formula to V (t, St) and using (3.86) we obtain

V (T, ST )− V0 = V (T, ST )− V (0, S0) =

∫ T

0

dV (t, St)

=

∫ T

0

∂V

∂S
dSt +

∫ T

0

∂V

∂t
+

1

2
v(t, St)

2S2
t

∂2V

∂2S
dt

+

∫ T

0

∫
R
V (t, St +H(t, x, St))− V (t, St)−H(t, x, St)

∂V

∂S
JX( dt, dx)

=

∫ T

0

∂V

∂S
dSt −

∫ T

0

∫
R
V (t, St +H(t, x, St))− V (t, St)−H(t, x, St)

∂V

∂S
ν( dx) dt

+

∫ T

0

∫
R
V (t, St +H(t, x, St))− V (t, St)−H(t, x, St)

∂V

∂S
JX( dt, dx)

=

∫ T

0

∂V

∂S
dSt +

∫ T

0

∫
R
V (t, St +H(t, x, St))− V (t, St)−H(t, x, St)

∂V

∂S
J̃X( dt, dx).

Using expression (3.82) for the dynamics of the asset price St (with r = 0), the
tracking error eMT can be expressed as follows:

eMT = V (T, ST )− V0 −
∫ T

0

αt dSt =

∫ T

0

(
∂V

∂S
(t, St)− αt

)
dSt

+

∫ T

0

∫
R
V (t, St +H(t, x, St))− V (t, St)−H(t, x, St)

∂V

∂S
J̃X( dt, dx)

=

∫ T

0

v(t, St)St

(
∂V

∂S
− αt

)
dWt (3.87)

+

∫ T

0

∫
R
V (t, St +H(t, x, St))− V (t, St)− αtH(t, x, St)J̃X( dt, dx).

Remark 3 For the delta hedging strategy αt = φ(t, St) = ∂V
∂S

(t, St) the tracking error
function eMT can be expressed as follows:

eMT =

∫ T

0

∫
R
V (t, St +H(t, x, St))− V (t, St)−H(t, x, St)

∂V

∂S
(t, St)J̃X( dt, dx).

Clearly, the tracking error for the delta hedging strategy need not be zero for ν 6≡ 0.

Next, we propose a criterion that can be used to find the optimal hedging strategy.

Proposition 3.5.4 The trading strategy αt = φ(t, St) of a large trader minimizing the
variance E

[
(εMT )2

]
of the tracking error is given by the implicit equation:

φ(t, St) = βρ(t, St)
[
v(t, St)

2S2
t

∂V

∂S
(t, St)

+

∫
R

(V (t, St +H(t, x, St))− V (t, St))H(t, x, St) ν( dx)
]
, (3.88)

where βρ(t, St) = 1/[v(t, St)
2S2

t +
∫
RH(t, x, St)

2ν( dx)] and H(t, x, S) = S(ex − 1) +
ρS[φ(t, S +H(t, x, S))− φ(t, S)].
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Proof. Using expression (3.87) for the tracking error εMT and Itô’s isometry we obtain

E
[
(εMT )2

]
= E

[∫ T

0

v(t, St)
2S2

t

(
∂V

∂S
(t, St)− αt

)2

dt

]

+E
[∫ T

0

∫
R

(V (t, St +H(t, x, St))− V (t, St)− αtH(t, x, St))
2 ν( dx) dt

]
.

The minimizer αt of the above convex quadratic minimization problem satisfies the first
order necessary conditions d(E [ε2T ] , αt) = 0, that is,

0 = −2E
[∫ T

0

(
v(t, St)

2S2
t

(
∂V

∂S
(t, St)− αt

)
+

∫
R
H(t, x, St)

(
V (t, St +H(t, x, St))− V (t, St)− αtH(t, x, St)

)
ν( dx)

)
ωt dt

]
for any variation ωt. Thus the tracking error minimizing strategy αt is given by (3.88).

Remark 4 The optimal trading strategy minimizing the variance of the tracking error
need not satisfy the structural Assumption 3.5.1. For instance, if ν = 0 then the tracking
error minimizer is just the delta hedging strategy φ = ∂SV . In the case of a call or put
option its gamma, i.e. ∂2

SV (t, S) becomes infinite as t → T and S = K. Given a level
L > 0 we can however minimize the tracking error E [ε2T ] under the additional constraint
supS>0 |S ∂φ

∂S
(t, S)| ≤ L. That is we can solve the following convex constrained nonlinear

optimization problem
min
φ

E
[
ε2T
]

s.t. |S∂Sφ| ≤ L

instead of the unconstrained minimization problem proposed in Proposition 3.5.4.

Remark 5 Notice that, if ν = 0 and ρ ≥ 0, the trading strategy αt reduces to the Black–
Scholes delta hedging strategy, i.e. αt = ∂V

∂S
(t, St). If ν 6≡ 0 and ρ = 0, then the optimal

trading strategy becomes αt = φ0(t, St) where

φ0(t, St) = β0(t, St)

(
σ2S2

t

∂V

∂S
(t, St) +

∫
R
St(e

x − 1) (V (t, Ste
x)− V (t, St)) ν( dx)

)
,

where β0(t, St) = 1/[σ2S2
t +

∫
R S

2
t (e

x − 1)2ν( dx)].

We conclude this section by the following proposition providing the first order approx-
imation of the tracking error minimizing trading strategy for the case when the parameter
ρ � 1 is small. In what follows, we derive the first order approximation of φρ(t, St) in
the form φρ(t, St) = φ0(t, St) + ρφ1(t, St) +O(ρ2) as ρ→ 0.

Clearly, the first order Taylor expansion for the volatility function v(t, S) has the
form:

v(t, S)2 =
σ2

(1− ρS∂Sφ)2
= σ2 + 2ρσ2S

∂φ0

∂S
(t, S) +O(ρ2), as ρ→ 0.
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With regard to Proposition 3.5.2 (see (3.79)) we haveH(t, x, S) = H0(t, x, S)+ρH1(t, x, S)+
O(ρ2), where

H0(t, x, S) = S(ex − 1), H1(t, x, S) = S[φ0(t, Sex)− φ0(t, S)]. (3.89)

The function βρ can be expanded as follows: βρ(t, S) = β0(t, S) + ρβ(1)(t, S) +O(ρ2),

β0(t, S) = 1/[σ2S2 + S2

∫
R
(ex − 1)2ν( dx)], (3.90)

β(1)(t, S) = −(β0(t, S))2

[
2σ2S3∂φ

0

∂S
(t, S) + 2S2

∫
R
(ex − 1)[φ0(t, Sex)− φ0(t, S)]ν( dx)

]
.

Using the first order expansions of the functions v2, βρ and H we obtain the following
results.

Proposition 3.5.5 For small values of the parameter ρ� 1, the tracking error variance
minimizing strategy αt = φρ(t, St) is given by

φρ(t, St) = φ0(t, St) + ρφ(1)(t, St) +O(ρ2), as ρ→ 0, (3.91)

where

φ(1)(t, S) = β0(t, S)

[
2σ2S3∂V

∂S
(t, S)

∂φ0

∂S
(t, S)

+

∫
R

(
V (t, Sex)− V (t, S) +

∂V

∂S
(t, Sex)H0(t, x, S)

)
H1(t, x, S)ν( dx)

]
+β(1)(t, S)

[
σ2S2∂V

∂S
(t, S) +

∫
R

(V (t, Sex)− V (t, S))H0(t, x, S)ν( dx)

]
and the functions H0, H1, β0 and β(1) are defined as in (3.89) and (3.90).

In this section we investigated a novel nonlinear option pricing model generalizing
the Frey–Stremme model under the assumption that the underlying asset price follows a
Lévy stochastic process. We derived the fully-nonlinear PIDE for pricing options under
influence of a large trader. We also proposed the hedging strategy minimizing the variance
of the tracking error.

3.6 Existence of solutions in Bessel potential spaces

Using the theory of abstract semilinear parabolic equations we prove existence and
uniqueness of solutions in the Bessel potential space. Our aim is to generalize known
existence results for a wide class of Lévy measures including those having strong singular
kernel. We also prove existence and uniqueness of solutions to the penalized PIDE repre-
senting approximation of the linear complementarity problem arising in pricing American
style of options under Lévy stochastic process. In the past years, existence results of PIDE
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has been studied in the literature. In [15] A. Bensoussan and J.-L. Lions (see Theorem
3.3 and Theorem 8.1) and also M. G. Garroni and J. L. Menaldi in [40] investigated the
existence and uniqueness of classical solutions for the case σ > 0. In [61] Mikulevicius
and Pragarauskas extended these results for the case σ = 0. Furthermore, in [62],[63]
they investigated existence and uniqueness of classical solutions in Hölder and Sobolev
spaces of the Cauchy problem to the partial-integro-differential equation of the order of
kernel singularity α ∈ (0, 2). Qualitative results using the notion of viscosity solutions
were provided by M. Crandall and P.-L. Lions in [27]. They were generalized to PIDE
by Awatif [11] and Soner [79] for the first order operators and by Alvarez and Tourin [5],
Barles et al. [12], and Pham [69] for the second order operators. In [57],[58] Mariani and
SenGupta proved existence of weak solutions of a generalized integro-differential equation
using the Schaefer fixed point theorem first for bounded domains and then for unbounded
domains. On other hand, in [77], Amster et al. proved the existence of solutions using
the method of upper and lower solutions in a general domain in the case of several as-
sets and for the regime-switching jump-diffusion model in [34]. In [8],[7] Arregui et al.
applied the theory of abstract parabolic equations in Banach spaces (cf. [46]) for the
proof of existence and uniqueness of solutions of a system of nonlinear PDEs for pricing
of XVA derivatives. In a recent paper, Cruz and Ševčovič [28] investigated a nonlinear
extension of the option pricing PIDE model (2.18) from numerical point of view. We
consider a model for pricing vanilla call and put options on underlying assets following
Lévy stochastic processes. Using the theory of abstract semilinear parabolic equations
we prove existence and uniqueness of solutions in the Bessel potential space representing
a fractional power space of the space of Lebesgue p-integrable functions with respect to
the second order Laplace differential operator. We generalize known existence results for
a wider class of Lévy measures including those having strong singular kernel with the
third order of singularity. We also prove existence and uniqueness of solutions to the
penalized PIDE representing approximation of the linear complementarity problem for a
PIDE arising in pricing American style of options.

The goal of this section is to prove main results regarding existence and uniqueness
of solution to the linear and nonlinear PIDE for pricing vanilla options on the underlying
asset following a Lévy stochastic process for a wide class of admissible activity Lévy
measures.

3.6.1 Existence results for the linear PIDE

In this section, we analyze solutions to the semilinear parabolic partial integro-differential
equation (PIDE):

∂u

∂τ
=

σ2

2

∂2u

∂x2
+ ω

∂u

∂x
+ g(τ, u)

+

∫
R

[
u(τ, x+ z)− u(τ, x)− (ez − 1)

∂u

∂x
(τ, x)

]
ν( dz), (3.92)

u(0, x) = u0(x),
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x ∈ R, τ ∈ (0, T ), where g is Hölder continuous in the τ variable and it is Lipschitz
continuous in the u variable. Here ν is a positive Radon measure on R such that∫
R min(z2, 1)ν( dz) < ∞. Our goal is to prove existence and uniqueness of a solution

to (3.92) in the framework of Bessel potential spaces. These functional spaces represent
a nested scale {Xγ}γ≥0 of Banach spaces such that

X1 ≡ D(A) ↪→ Xγ1 ↪→ Xγ2 ↪→ X0 ≡ X,

for any 0 ≤ γ2 ≤ γ1 ≤ 1 where A is a sectorial operator in the Banach space X with
a dense domain D(A) ⊂ X. For example, if A = −∆ is the Laplacian operator in Rn

with the domain D(A) ≡ W 2,p(Rn) ⊂ X ≡ Lp(Rn) then Xγ is embedded in the Sobolev-
Slobodecki space W 2γ,p(Rn) consisting of all functions having 2γ-fractional derivative
belonging to the Lebesgue space Lp(Rn) of p-integrable functions (cf. [46]). In this paper,
our goal is to prove existence and uniqueness of solutions to (3.92) for a general class of
the so-called admissible activity Lévy measures ν satisfying suitable growth conditions
at ±∞ and the origin. We can rewrite the PIDE (3.92) in the abstract form as follows:

∂u

∂τ
+ Au = ω

∂u

∂x
+ f [u] + g(τ, u), x ∈ R, τ ∈ (0, T ), (3.93)

u(0, x) = u0(x), x ∈ R,

where the linear operators A and f are defined by:

Au = −σ
2

2

∂2u

∂x2
, (3.94)

f [u](x) =

∫
R

[
u(x+ z)− u(x)− (ez − 1)

∂u

∂x
(x)

]
ν( dz), (3.95)

and g is a Hölder continuous mapping in the τ variable and it is Lipschitz continuous in the
u variable. In order to prove existence, continuation and uniqueness of a solution to the
problem (3.93) we follow the qualitative theory of semilinear abstract parabolic equations
developed by Henry in [46]. First, we recall the concept of an analytic semigroup of linear
operators and a sectorial operator in a Banach space.

Definition 3.6.1 [46] A family of bounded linear operators {S(t), t ≥ 0} in a Banach
space X is called an analytic semigroup if it satisfies the following conditions:

i) S(0) = I, S(t)S(s) = S(s)S(t) = S(t+ s), for all t, s ≥ 0;

ii) S(t)x→ x when t→ 0+ for all x ∈ X;

iii) t→ S(t)x is a real analytic function on 0 < t <∞ for each x ∈ X.

The associated infinitesimal generator A is defined as follows: Ax = limt→0+
1
t
(S(t)x−x)

and its domain D(A) ⊆ X consists of those x for which the limit exists in X.
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Definition 3.6.2 [46] Let Sa,φ = {λ ∈ C : φ ≤ arg(λ− a) ≤ 2π − φ} be a sector of com-
plex numbers. A close densely defined linear operator A : D(A) ⊂ X → X which is called
sectorial if there exists a constant M ≥ 0 such that ‖(A − λ)−1‖ ≤ M/|λ − a| for all
λ ∈ Sa,φ ⊂ C \ σ(A).

It is well known that that if A is a sectorial operator then −A is an infinitesimal generator
of an analytic semigroup S(t) =

{
e−At, t ≥ 0

}
(cf. [46]). If X is a Banach space then we

can define the scale of fractional power spaces {Xγ}γ≥0 in the following way:

Xγ = D(Aγ) = Range(A−γ) =
{
u ∈ X : ∃ϕ ∈ X, u = A−γϕ

}
,

where, for any γ > 0, the operator A−γ is defined by virtue of the Gamma function, i.e.
A−γ = 1

Γ(γ)

∫∞
0
ξγ−1e−Aξ dξ. The norm is defined as ‖u‖Xγ = ‖Aγu‖X = ‖ϕ‖X . Note

that X0 = X, X1 = D(A), and X1 ≡ D(A) ↪→ Xγ1 ↪→ Xγ2 ↪→ X0 ≡ X, for any
0 ≤ γ2 ≤ γ1 ≤ 1.

In what follows, by G ∗ ϕ we shall denote the convolution operator defined by (G ∗
ϕ)(x) =

∫
Rn G(x− y)ϕ(y) dy.

Lemma 3.6.3 [46, Section 1.6], [81, Chapter 5] The Laplace operator −∆ is sectorial in
the Banach space X = Lp(Rn) of Lebesgue p-integrable functions for any p ≥ 1 and n ≥ 1.
Its domain D(A) is embedded into the Sobolev space W 2,p(Rn). The fractional power space
Xγ, γ > 0, is the space of Bessel potentials: Xγ = L p

2γ(Rn) := {G2γ ∗ ϕ, ϕ ∈ Lp(Rn)}
where

G2γ(x) =
(4π)−n/2

Γ(γ)

∫ ∞
0

ξ−1+(2γ−n)/2e−(ξ+‖x‖2/(4ξ)) dξ

is the Bessel potential function. The norm of u = G2γ ∗ϕ is given by ‖u‖Xγ = ‖ϕ‖Lp. The
fractional power space Xγ is continuously embedded into the fractional Sobolev-Slobodeckii
space W 2γ,p(Rn).

Lemma 3.6.4 Assume ν is an admissible activity Lévy measure with shape parameters
α,D± and µ where α < 3 and either µ > 0, D± ∈ R, or µ = 0, D− + 1 < 0 < D+.
Suppose that γ ≥ 1/2 and γ > (α − 1)/2. Then, for the mapping f defined by (3.95),
there exists a constant C > 0 such that for any u satisfying ∂xu ∈ Xγ−1/2 the following
estimate holds:

‖f [u]‖Lp ≤ C‖∂xu‖Xγ−1/2 .

In particular, if u ∈ Xγ we have ‖f [u]‖Lp ≤ C‖u‖Xγ and the mapping f is a bounded
linear operator from the fractional power space Xγ into X = Lp(R).

Proof. The mapping f can be split as follows: f [u] = f̃ [u] + ω̃∂xu where

f̃ [u](x) =

∫
R

(
u(x+ z)− u(x)− z∂u

∂x
(x)

)
ν( dz).

and ω̃ =
∫
R (z − ez + 1) ν( dz). Since z − ez + 1 = O(z2) as z → 0, and

0 ≤ ν( dz) = h(z) dz ≤ |z|−αh̃(z) dz, where h̃(z) = C0e
−µz2

(
eD
−z1z≥0 + eD

+z1z<0

)
,
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we have ω̃ ∈ R provided that 0 ≤ α < 3 and either µ > 0, D± ∈ R, or µ = 0 and
D− + 1 < 0 < D+.

First, we consider the case when γ > 1/2. We shall prove boundedness of the second
linear operator f̃ . If u is such that ∂xu ∈ Xγ−1/2 then there exists ϕ ∈ X = Lp(R) such
that ∂xu = A−(2γ−1)/2ϕ = G2γ−1 ∗ ϕ and

‖∂xu‖Xγ−1/2 = ‖ϕ‖X = ‖ϕ‖Lp .

Hence, for any x, θ and z we have

∂u

∂x
(x+ θz)− ∂u

∂x
(x) = (G2γ−1(x+ θz − ·)−G2γ−1(x− ·)) ∗ ϕ(·).

Recall the following inequality for the convolution operator:

‖G ∗ ϕ‖Lp ≤ ‖G‖Lq‖ϕ‖Lr ,

where p, q, r ≥ 1 and 1/p+ 1 = 1/q+ 1/r (see [46, Section 1.6]). In the special case when
q = 1 we have ‖G ∗ ϕ‖Lp ≤ ‖G‖L1‖ϕ‖Lp . According to [81, Chapter 5.4, Proposition 7]
we know that the modulus of continuity of the Bessel kernel function G2γ−1 satisfies the
estimate:

‖G2γ−1(·+ h)−G2γ−1(·)‖L1 ≤ C1|h|2γ−1,

for any h where C1 > 0 is a constant. Therefore, for any θ, z ∈ R we have∫
R

∣∣∣∣∂u∂x(x+ θz)− ∂u

∂x
(x)

∣∣∣∣p dx = ‖ (G2γ−1(·+ θz)−G2γ−1(·)) ∗ ϕ‖pLp

≤ ‖G2γ−1(·+ θz)−G2γ−1(·)‖pL1‖ϕ‖pLp ≤ Cp
1 |θz|(2γ−1)p‖∂xu‖pXγ−1/2 .

The latter inequality formally holds true also for the case γ = 1/2 because∫
R

∣∣∣∣∂u∂x(x+ θz)− ∂u

∂x
(x)

∣∣∣∣p dx ≤ 2p‖∂xu‖pLp = 2p‖∂xu‖pX0 .

The rest of the proof of boundedness of the mapping f holds for γ > 1/2 as well as

γ = 1/2. Now, as u(x+ z)− u(x)− z ∂u
∂x

(x) = z
∫ 1

0
∂u
∂x

(x+ θz)− ∂u
∂x

(x) dθ, we obtain

∫
R
|u(x+ z)− u(x)− z∂u

∂x
(x)|p dx = |z|p

∫
R

∣∣∣∣∫ 1

0

∂u

∂x
(x+ θz)− ∂u

∂x
(x) dθ

∣∣∣∣p dx

≤ |z|p
∫ 1

0

∫
R

∣∣∣∣∂u∂x(x+ θz)− ∂u

∂x
(x)

∣∣∣∣p dx dθ ≤ Cp
1 |z|2γp‖∂xu‖

p

Xγ−1/2 .

Now, as 0 ≤ ν( dz) = h(z) dz ≤ |z|−αh̃(z) dz = (|z|−βh̃(z)
1
2 ) · (|z|β−αh̃(z)

1
2 ) dz, using the
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Hölder inequality with exponents p, q such that 1/p+ 1/q = 1 we obtain

‖f̃ [u]‖pLp =

∫
R

∣∣∣∣∫
R
u(x+ z)− u(x)− z∂u

∂x
(x)ν( dz)

∣∣∣∣p dx

≤
∫
R

∣∣∣∣∫
R

∣∣∣∣u(x+ z)− u(x)− z∂u
∂x

(x)

∣∣∣∣h(z) dz

∣∣∣∣p dx

≤
∫
R

∫
R

∣∣∣∣u(x+ z)− u(x)− z∂u
∂x

(x)

∣∣∣∣p |z|−βph̃(z)p/2 dz

×
(∫

R
|z|(β−α)qh̃(z)q/2 dz

)p/q
dx

=

∫
R

(∫
R

∣∣∣∣u(x+ z)− u(x)− z∂u
∂x

(x)

∣∣∣∣p dx

)
|z|−βph̃(z)p/2 dz

×
(∫

R
|z|(β−α)qh̃(z)q/2 dz

)p/q
≤ Cp

1‖∂xu‖
p

Xγ−1/2

∫
R
|z|(2γ−β)ph̃(z)p/2 dz

(∫
R
|z|(β−α)qh̃(z)q/2 dz

)p/q
.

The integrals C2 =
∫
R |z|

(2γ−β)ph̃(z)p/2 dz and C3 =
∫
R |z|

(β−α)qh̃(z)q/2 dz are finite pro-
vided that

(2γ − β)p > −1, (β − α)q = (β − α)
p

p− 1
> −1

and µ > 0, D± ∈ R, or µ = 0 and D− < 0 < D+. The later inequalities are satisfied if
there exists a parameter β such that

α− 1 + 1/p < β < 2γ + 1/p.

Such a choice of β is possible because we have assumed γ > (α−1)/2. Hence there exists
a constant C > 0 such that ‖f̃ [u]‖Lp ≤ C‖∂xu‖Xγ−1/2 for any u satisfying ∂xu ∈ Xγ−1/2,
as claimed. Due to the continuity of the embedding Xγ−1/2 ↪→ X we have ‖f [u]‖Lp =
‖f̃ [u] + ω̃∂xu‖Lp ≤ C‖∂xu‖Xγ−1/2 = C‖u‖Xγ for any u ∈ Xγ and f is a bounded linear
operator from Xγ into X = Lp. ♦

Let us denote by C([0, T ], Xγ) the Banach space of all continuous functions from the
interval [0, T ] to Xγ with the maximum norm ‖U(·)‖C([0,T ],Xγ) = supτ∈[0,T ] ‖U(τ)‖Xγ .
We recall the well known result on existence and uniqueness of a solution to abstract
parabolic equations in Banach spaces due to Henry [46].

Proposition 3.6.1 [46, Chapter 3] Suppose that a densely defined closed linear operator
−A is a generator of an analytic semigroup

{
e−At, t ≥ 0

}
in a Banach space X, U0 ∈ Xγ

where 0 ≤ γ < 1. Assume F : [0, T ]×Xγ → X and h : (0, T ]→ X are Hölder continuous

mappings in the τ variable,
∫ T

0
‖h(τ)‖X dx <∞, and F is a Lipschitz continuous mapping

in the U variable. Then, there exists a unique solution U ∈ C([0, T ], Xγ) of the following
abstract semilinear evolution equation:

∂U

∂τ
+ AU = F (τ, U) + h(τ), U(0) = U0. (3.96)
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Moreover, ∂τU(τ) ∈ X,U(τ) ∈ D(A) for any τ ∈ (0, T ).

Remark 6 By a solution to (3.96) we mean a function U ∈ C([0, T ], Xγ) satisfying
(3.96) in the integral (mild) sense, i.e.

U(τ) = e−AτU0 +

∫ τ

0

e−A(τ−s)(F (s, U(s)) + h(s)) ds for any τ ∈ [0, T ].

Recall that the key idea of the proof of Proposition 3.6.1 is based on the Banach fixed
point argument combined with the decay estimate ‖e−At‖Xγ = ‖Aγe−At‖X ≤Mt−γe−at of
the norm of the semigroup e−At for any t > 0.

As a direct consequence of Proposition 3.6.1 and Lemma 3.6.4 we deduce the following
result:

Theorem 3.6.5 Assume ν is an admissible activity Lévy measure with the shape param-
eters α,D± and µ where α < 3 and either µ > 0, D± ∈ R, or µ = 0, D− + 1 < 0 < D+.
Assume γ ≥ 1/2 and γ > (α − 1)/2. Suppose that the function g(τ, u) is Hölder contin-
uous in the τ variable and Lipschitz continuous in the u variable. Then for any u0 ∈ Xγ

and T > 0 there exists a unique solution u ∈ C([0, T ], Xγ) to the PIDE (3.92).

3.6.1.1 The Black-Scholes PIDE model

In this section, our purpose is to investigate properties of solutions to a PIDE generalizing
the Black-Scholes model. An important definition concerning this generalization is the
definition of a Lévy measure of a given process Xt . The measure ν(A) of a Borel set
A ⊆ R defined in (2.23) gives, as we know, the mean number, per unit of time, of jumps
of Xt, t ≥ 0, whose amplitude belongs to the set A.

For the underlying asset price dynamics we will suppose that St, t ≥ 0,follows the
geometric Lévy proces, i.e. St = eXt where Xt, t ≥ 0, is a Lévy process. Then it is well
known (cf. [24],[28]) that the price of a contingent claim in the presence of jumps is given
by a solution V (t, S) of the following partial integro-differential equation:

∂V

∂t
+

σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV

+

∫
R

[
V (t, Sez)− V (t, S)− (ez − 1)S

∂V

∂S
(t, S)

]
ν( dz) = 0, (3.97)

V (T, S) = Φ(S), S > 0, t ∈ [0, T ).

Here Φ is the pay-off diagram of a plain vanilla option. For example, Φ(S) = (S −K)+

for a call option, or Φ(S) = (K − S)+ for a put option where K > 0 is the strike price.
Here and after we shall denote by a+ = max(a, 0) and a− = min(a, 0) the positive and
negative parts of a real number a, respectively.

If we consider the following change of variables V (t, S) = e−rτu(τ, x) where τ = T − t,
x = ln( S

K
) then we obtain the following PIDE for the function u(τ, x):



54
CHAPTER 3. INTEGRO-DIFFERENTIAL EQUATIONS FOR OPTION

PRICING

∂u

∂τ
=

σ2

2

∂2u

∂x2
+

(
r − 1

2
σ2

)
∂u

∂x
(3.98)

+

∫
R

[
u(τ, x+ z)− u(τ, x)− (ez − 1)

∂u

∂x
(τ, x)

]
ν( dz),

u(0, x) = Φ(Kex), x ∈ R, τ ∈ (0, T ).

Unfortunately, the initial condition u(0, x) = Φ(Kex) does not belong to the Banach
space X for both call and put option pay-off diagrams Φ, i.e. Φ(S) = (S − K)+ and
Φ(S) = (K − S)+. The idea how to formulate existence and uniqueness of a solution to
the PIDE (3.98) is based on the idea of shifting the solution u by uBS where the function
uBS(τ, x) = erτVBS(T − τ,Kex) corresponds to transformation of the classical solution
VBS to the linear Black-Scholes equation without PIDE part, i.e.

∂VBS
∂t

+
σ2

2
S2∂

2VBS
∂S2

+ rS
∂VBS
∂S

− rVBS = 0,

VBS(T, S) = Φ(S).

Recall that the solution VBS for a call or put option can be expressed explicitly:

V call
BS (t, S) = SN(d1)−Ke−r(T−t)N(d2),

V put
BS (t, S) = Ke−r(T−t)N(−d2)− SN(−d1),

where

d1,2 =
ln(S/K) + (r ± σ2/2)(T − t)

σ
√
T − t

, and N(d) =

∫ d

−∞

e−ξ
2/2

√
2π

dξ

is the cumulative distribution function of the normal distribution (cf. [51]). Furthermore,
the transformed function uBS is a solution to the linear parabolic PDE:

∂uBS
∂τ

=
σ2

2

∂2uBS
∂x2

+

(
r − 1

2
σ2

)
∂uBS
∂x

, (3.99)

uBS(0, x) = Φ(Kex), τ ∈ (0, T ), x ∈ R,

where Φ(Kex) = K(ex − 1)+ for the call option and Φ(Kex) = K(1 − ex)+ for the put
option.

In what follows, we shall provide important estimates for the function f [uBS].

Lemma 3.6.6 Suppose that ν is an admissible activity Lévy measure ν with the shape
parameters α,D± and µ where α < 3 and either µ > 0, D± ∈ R, or µ = 0, D− + 1 < 0 <
D+. Suppose that 1

2
≤ γ < 1 and α−1

2
< γ < p+1

2p
≤ 1. Then there exists a constant C0 > 0

depending on the parameters p, σ, r, T,K only, and such that the function f [uBS(τ, ·)]
satisfies the following estimates:

‖f [uBS(τ, ·)]‖Lp ≤ C0τ
−(2γ−1)( 1

2
− 1

2p), 0 < τ ≤ T,

‖f [∂τuBS(τ, ·)]‖Lp ≤ C0τ
−γ− 1

2
+ 1

2p , 0 < τ ≤ T,

‖f [uBS(τ1, ·)]− f [uBS(τ2, ·)]‖Lp ≤ C0|τ1 − τ2|−γ+ p+1
2p , 0 < τ1, τ2 ≤ T.
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Proof. First, we consider the case of a call option, i.e. uBS = ucallBS with uBS(0, x) =
Φ(Kex) = K(ex − 1)+. It is important to emphasize that f [ex] = 0. Hence

f [uBS] = f [uBS −Kerτ+x], and ∂τf [uBS] = f [∂τ (uBS −Kerτ+x)].

In what follows, we shall denote by C0 any generic positive constant depending on the
parameters p, σ, r, T,K only. With regard to Lemma 3.6.4 we shall estimate the Xγ−1/2

norm of the function v:

v(τ, x) = ∂x
(
uBS(τ, x)−Kerτ+x

)
= Kerτ+x(N(d1(τ, x))− 1), (3.100)

where d1(τ, x) = (x+ (r + σ2/2)τ) /(σ
√
τ). In the case of a put option we have

∂xu
put
BS(τ, x) = −Kerτ+xN(−d1(τ, x)) = −Kerτ+x(1−N(d1(τ, x))) = v(τ, x).

Hence the proof of the statement of lemma for the case of a put option is essentially the
same as the following argument for a call option.

Now, using integration by parts and substitution ξ = d1(τ, x), we obtain

‖v(τ, ·)‖pLp = Kpeprτ
∫ ∞
−∞

epx(1−N(d1))p dx

≤ Kpeprτ
∫ ∞
−∞

epx(1−N(d1)) dx = Kpeprτ
∫ ∞
−∞

epx

p

e−d
2
1/2

√
2π

1

σ
√
τ

dx

= Kpeprτ
∫ ∞
−∞

epσ
√
τξ−p(r+σ2/2)τ

p

e−ξ
2/2

√
2π

dξ =
1

p
Kpep(p−1)τσ2/2.

Thus ‖v(τ, ·)‖Lp ≤ p−1/pKe(p−1)Tσ2/2 ≡ C0 for any 0 < τ ≤ T .
Now, as ∂xv = v + w where

w = Kerτ+xN ′(d1)
1

σ
√
τ

= Kerτ+x e
−d2

1/2

σ
√

2πτ
.

we obtain

‖w(τ, ·)d1(τ, ·)k‖pLp =
Kpeprτ

(σ
√

2πτ)p−1

∫ ∞
−∞

epx
e−pd

2
1/2|d1|pk

σ
√

2πτ
dx

=
Kpeprτ

(σ
√

2πτ)p−1

∫ ∞
−∞

epσ
√
τξ−p(r+σ2/2)τ e

−ξ2/2|ξ|pk√
2π

dξ (3.101)

≤ Cp
0τ
− p−1

2

for k = 0, 1, 2. Applying (3.101) with k = 0 we obtain ‖w(τ, ·)‖Lp ≤ C0τ
− 1

2
+ 1

2p . As

a consequence, ‖v(τ, ·)‖W 1,p ≤ C0τ
− 1

2
+ 1

2p . Since the Bessel potential space L p
2γ−1 is an

interpolation space between L p
0 = Lp and L p

1 = W 1,p using the Gagliardo-Nirenberg
interpolation inequality

‖v‖Xγ−1/2 ≡ ‖v‖L p
2γ−1
≤ C0‖v‖θLp‖v‖1−θ

W 1,p , where 2γ − 1 = 0 · θ + 1 · (1− θ),
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(cf. [46, Section 1.6]) and applying Lemma 3.6.4 we obtain

‖f [uBS(τ, ·)]‖Lp ≤ C‖v(τ, ·)‖Xγ−1/2 ≤ C0τ
−(2γ−1)( 1

2
− 1

2p), 0 < τ ≤ T,

as claimed.
In order to prove the remaining estimates, let us estimate the norm ‖∂τv(τ, ·)‖Xγ−1/2 .

As ∂τd1 = −τ−3/2x/(2σ)+τ−1/2(r+σ2/2)/(2σ) = −τ−1d1/2+τ−1/2(r+σ2/2)/σ we have

∂τv = rv +Kerτ+xN ′(d1)∂τd1 = rv + w(−τ−1/2σd1/2 + r + σ2/2).

Using the estimate (3.101) with k = 0, 1 we obtain

‖∂τv(τ, ·)‖Lp ≤ C0τ
−1+ 1

2p , 0 < τ ≤ T.

To estimate the W 1,p norm of ∂τv we recall that ∂xv = v + w. Thus

∂x∂τv = ∂τv + ∂τw = ∂τv + rw +Kerτ+x

(
N ′′(d1)

σ
√
τ
∂τd1 −

N ′(d1)

2στ 3/2

)
= ∂τv + rw + w

(
−d1∂τd1 − τ−1/2

)
= ∂τv + rw + w

(
d2

1τ
−1/2− τ−1/2− τ−1/2d1(r + σ2/2)/σ

)
,

as N ′′(d1) = −d1N
′(d1). Using the estimate (3.101) with k = 0, 1, 2 we obtain

‖∂τv(τ, ·)‖W 1,p ≤ C0τ
− 3

2
+ 1

2p , 0 < τ ≤ T.

Again, using the Gagliardo-Nirenberg interpolation inequality

‖∂τv‖Xγ−1/2 ≡ ‖∂τv‖L p
2γ−1
≤ C0‖∂τv‖θLp‖∂τv‖1−θ

W 1,p , where 2γ − 1 = 0 · θ + 1 · (1− θ)

and applying Lemma 3.6.4 we obtain

‖∂τf [uBS(τ, ·)]‖Lp ≤ C‖∂τv(τ, ·)‖Xγ−1/2 ≤ C0τ
−γ− 1

2
+ 1

2p , 0 < τ ≤ T,

as claimed in the second statement of lemma.
Finally,

‖f [uBS(τ1, ·)]− f [uBS(τ2, ·)]‖Lp = ‖
∫ τ2

τ1

∂τf [uBS(τ, ·)]dτ‖Lp

≤
∣∣∣∣∫ τ2

τ1

‖∂τf [uBS(τ, ·)]‖Lpdτ
∣∣∣∣ ≤ C0|τ1 − τ2|−γ+ p+1

2p , 0 < τ1, τ2 ≤ T,

and the function f [uBS(τ, ·)] is Hölder continuous with the Hölder exponent −γ+ p+1
2p

> 0.
The proof of lemma follows. ♦

Combining the previous Lemmas 3.6.4, 3.6.6, sectoriality of the operator A = −∂2
x in

X = Lp(R) (see Lemma 3.6.3), and Proposition 3.6.5 we obtain the following existence
and uniqueness result for the linear PIDE (3.98), and, consequently, for the linear option
pricing model (3.97):
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Theorem 3.6.7 Assume ν is an admissible activity Lévy measure with the shape param-
eters α < 3 and either µ > 0, D± ∈ R, or µ = 0 and D−+1 < 0 < D+. Let Xγ = L p

2γ(R)

be the space of Bessel potentials where 1
2
≤ γ < 1 and α−1

2
< γ < p+1

2p
.

Then, for any T > 0, the linear PIDE (3.98) has the unique solution u such that the
difference U = u − uBS satisfies U ∈ C([0, T ], Xγ). Moreover, U(τ, ·) ∈ X1 = L p

2 (R) ⊆
W 2,p(R) and ∂τU(τ, ·) ∈ X = Lp(R) for any τ ∈ (0, T ).

Proof. Since the Black-Scholes solution uBS solves the linear PDE (3.99) the difference
U = u− uBS of a solution u to (3.98) and uBS satisfies the PIDE:

∂U

∂τ
=

σ2

2

∂2U

∂x2
+

(
r − 1

2
σ2

)
∂U

∂x
+ f [U ] + f [uBS],

U(0, x) = 0, x ∈ R, τ ∈ (0, T ).

This PIDE equation can be rewritten in the abstract form:

∂U

∂τ
+ AU = F (U) + h(τ), U(0) = 0, (3.102)

where the linear operators A and f were defined in (3.94) and (3.95). The functions
F = F (U) and h = h(τ), F : Xγ → X, h : (0, T ]→ X are defined as follows:

F (U) = (r − σ2/2)
∂U

∂x
+ f [U ], h(τ) = f [uBS(τ, ·)].

With regard to Lemma 3.6.4, F is a bounded linear mapping, and, consequently Lipschitz
continuous from the space Xγ into X provided that γ ≥ 1/2 and γ > (α− 1)/2.

Taking into account Lemma 3.6.6 we obtain

‖h(τ1)− h(τ2)‖Lp = ‖f [uBS(τ1, ·)]− f [uBS(τ2, ·)]‖Lp ≤ C0|τ1 − τ2|−γ+ p+1
2p ,

for any 0 < τ1, τ2 ≤ T . Since γ < p+1
2p

the mapping h : [0, T ] → X ≡ Lp(R) is Hölder
continuous. Moreover,∫ T

0

‖h(τ)‖Lpdτ =

∫ T

0

‖f [uBS(τ, ·)]‖Lpdτ ≤ C0

∫ T

0

τ−(2γ−1)( 1
2
− 1

2p)dτ <∞,

because (2γ− 1)
(

1
2
− 1

2p

)
< 1. The rest of the proof now follows from Theorem 3.6.5. ♦

The following corollary is a consequence of embedding of the Bessel potential space
into the space of Hölder continuous functions.

Corollary 3.6.1 Suppose that an admissible activity Lévy measure ν fulfills assumptions
of Theorem 3.6.7. Then, for any T > 0, linear PIDE (3.98) has the unique solution
u ∈ C([0, T ], Cκ

loc(R)), with the Hölder exponent κ > 0 satisfying α− 1− 1/p < κ < 1.
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Proof. Recall continuity of the embedding

Xγ = L p
2γ(R) ↪→ Cκ

loc(R),

where κ = 2γ − 1/p (cf. [46, Section 1.6]), i.e. γ = κ/2 + 1/(2p). Now, there exists
1/2 ≤ γ < 1 such that α−1

2
< γ < p+1

2p
if and only if α − 1 − 1/p < κ < 1, as claimed.

Therefore U = u− uBS belongs to C([0, T ], Cκ
loc(R)).

The solution uBS = uBS(τ, x) is a real analytic function in the τ and x variables
for any τ > 0 and x ∈ R. As uBS(0, x) represents the transformed call or put payoff
diagram we have uBS = uBS(0, x) is locally Lipschitz continuous in the x variable. Hence
uBS ∈ C([0, T ], Cκ

loc(R)). Therefore the solution u = U + uBS to the linear PIDE (3.98)
belongs to C([0, T ], Cκ

loc(R)), as claimed. ♦

Remark 7 The conditions 1
2
≤ γ < 1 and α−1

2
< γ < p+1

2p
are fulfilled for a power p ≥ 1

provided that either α ∈ [0, 2] and p ≥ 1, or α ∈ (2, 3) and 1 ≤ p < 1/(α − 2). It means
that if the Lévy measure ν has a strong singularity of the order α ∈ (2, 3) at the origin
then we can find a solution in the framework of fractional power spaces of the Banach
space X = Lp(R) where p is limited by the order α.

3.6.2 Existence results for nonlinear PIDE option pricing mod-
els

In this section we present an application of the general existence and uniqueness result
for the penalized version of the PIDE for solving the linear complementarity problem
arising in pricing American style of a put option on an underlying asset following Lévy
stochastic process.

In [15] Bensoussan and Lions proved results which allow to characterize price of a put
option in terms of a solution of a system of partial-integro differential inequalities (see
also [52]). In [86] and [85] Wang et al. investigated the penalty method for solving a
linear complementarity problem using a power penalty term for the case without jumps in
underlying asset dynamics. In [54] Lesman and Wang proposed a power penalty method
for solving the free boundary problem for pricing American options under transaction
costs. Penalty methods for American option pricing under stochastic volatility models
are studied in the paper [90] by Zvan, Forsyth and Vetzal. In [30] d’Halluin, Forsyth, and
Labahn investigated a penalty method for American options on jump diffusion underlying
processes.

Recall that American style options can be exercised anytime before the maturity time
T . In the case of an American put option the state space {(t, S), t ∈ [0, T ], S > 0} can
be divided into the so-called early exercise region E and continuation region C where the
put option should be exercised and hold, respectively. These regions are separated by the
early exercise boundary defined by a function t 7→ Sf (t), such that 0 < Sf (t) ≤ K, and

E = {(t, S), t ∈ [0, T ], 0 < S ≤ Sf (t)}, C = {(t, S), t ∈ [0, T ], Sf (t) < S}.
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We refer the reader to [51], [80], [53], [89] for overview of qualitative properties of the
early exercise boundary for the case of pricing American style of put options for the
Black-Scholes PDE with no integral part.

In the continuation region C the put option price is strictly greater than the pay-off
diagram, i.e. V (t, S) > Φ(S) = (K − S)+ for Sf (t) < S. In the exercise region E the put
option price is given by its pay-off diagram, i.e. V (t, S) = Φ(S) = (K − S)+. Moreover,
the put option price V (t, S) is a decreasing function in the S variable. Hence in the
exercise region where 0 < S < Sf (t) ≤ K, for the price V (t, S) = K − S we obtain

∂V

∂t
+ LS[V ] ≡ ∂V

∂t
+
σ2

2
S2∂

2V

∂S2
+ rS

∂V

∂S
− rV

+

∫
R

[
V (t, Sey)− V (t, S)− S (ey − 1)

∂V

∂S
(t, S)

]
ν( dy)

= −rK +

∫ 0

−∞
[V (t, Sey)− (K − S)− S (ey − 1) (−1)] ν( dy)

+

∫ ∞
0

[V (t, Sey)− (K − S)− S (ey − 1) (−1)] ν( dy)

= −rK +

∫ ∞
0

[V (t, Sey)− (K − S) + S (ey − 1)] ν( dy)

≤ −rK + S

∫ ∞
0

(ey − 1) ν( dy)

because S 7→ V (t, S) is a decreasing function, and thus V (t, Sey) ≤ V (t, S) = K − S for
y ≥ 0, and V (t, Sey) = K − Sey for y ≤ 0.

Let us assume that the admissible activity Lévy measure ν satisfies the inequality:∫ ∞
0

(ey − 1) ν( dy) ≤ r. (3.103)

Then the price V (t, S) of an American put option satisfies the inequality ∂tV (t, S) +
LS[V ](t, S) ≤ 0 for 0 < S ≤ Sf (t) ≤ K, i.e. for (t, S) ∈ E . On the other hand, for
(t, S) ∈ C the price V (t, S) is obtained from the Black-Scholes PIDE equation ∂tV (t, S)+
LS[V ](t, S) = 0.

In summary, we have shown the following result.

Theorem 3.6.8 Let V (t, S) be the price of an American style put on underlying asset S
following a geometric Lévy process with an admissible activity Lévy measure ν satisfying
the structural inequality (3.103). Then V is a solution to the linear complementarity
problem:

∂tV (t, S) + LS[V ](t, S) ≤ 0, V (t, S) ≥ Φ(S), (3.104)(
∂tV (t, S) + LS[V ](t, S)

)
· (V (t, S)− Φ(S)) = 0, (3.105)

for any t ∈ [0, T ), S > 0, and V (T, S) = Φ(S) = (K − S)+.
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A standard method for solving the linear complementarity problem (3.104)–(3.105)
is based on construction of an approximate solution by means of the penalty method.
It consists in construction of a suitable nonnegative penalty function Gε(t, V ) penalizing
negative values of the difference V (t, S)−Φ(S). For example, one can consider the penalty
function of the form:

Gε(t, V )(S) = ε−1 min(S/K, 1)(Φ(S)− V (t, S))+,

where 0 < ε � 1 is a small parameter. Clearly, Gε(t, V )(S) = 0 if and only if V (t, S) ≥
Φ(S). Then the penalized problem for the approximate solution V = Vε to (3.104)–(3.105)
reads as follows:

∂tV + LS[V ] + Gε(t, V ) = 0, S > 0, t ∈ [0, T ), (3.106)

V (T, S) = Φ(S).

In terms of the transformed function u(τ, x) = erτV (T − τ,Kex) and the shifted
function U = u− uBS the penalized PIDE problem (3.106) can be rewritten as follows:

∂U

∂τ
+ AU = F (U) + h(τ) + gε(τ, U), U(0) = 0. (3.107)

The penalty term gε can be deduced from Gε, i.e.

gε(τ, U) = ε−1ex
−

(w(τ, x)− U)+, where w(τ, x) = erτΦ(Kex)− uBS(τ, x).

Recall that the linear operators A and f were defined in (3.94) and (3.95) and

F (U) = (r − σ2/2)
∂U

∂x
+ f [U ], h(τ) = f [uBS(τ, ·)].

Before proving existence and uniqueness of a solution to the penalized PIDE equation
(3.107) we need the following auxiliary lemma.

Lemma 3.6.9 The penalty function gε : [0, T ] ×X → X is Lipschitz continuous in the
U variable and Hölder continuous in the τ variable, i.e. there exists a constant C0 > 0
such that

‖gε(τ, U1)− gε(τ, U2)‖X ≤ ε−1‖U1 − U2‖X , ‖gε(τ1, U)− gε(τ2, U)‖X ≤ ε−1C0|τ1 − τ2|
p+1
2p

for any U,U1, U2 ∈ X and τ, τ1, τ2 ∈ [0, T ].

Proof. Note the inequality |a+ − b+| ≤ |a− b| for all a, b ∈ R. As ex
− ≤ 1, we obtain

‖gε(τ, U1)− gε(τ, U2)‖pLp ≤ ε−p
∫ ∞
−∞

∣∣(w(τ, x)− U1(x))+ − (w(τ, x)− U2(x))+
∣∣p dx

≤ ε−p
∫ ∞
−∞
|U1(x)− U2(x)|p dx = ε−p‖U1 − U2‖pLp .



3.6. EXISTENCE OF SOLUTIONS IN BESSEL POTENTIAL SPACES 61

Moreover, it is easy to verify that the function ex
−
w(τ, x) belongs to X = Lp and

w(τ, x) = erτΦ(Kex)−KN(−d2(τ, x)) +Kerτ+xN(−d1(τ, x)).

Hence gε(τ, 0) ∈ X = Lp and gε(τ, ·) : X → X is well defined and Lipschitz continuous
mapping for any τ ∈ [0, T ].

Recall that d1−d2 = σ
√
τ , d1+d2 = 2(x+rτ)/σ

√
τ , and, consequently, erτ+xN ′(−d1)−

N ′(−d2) = 0. Since N(−d1) = 1−N(d1) we obtain

∂τw = rerτΦ(Kex) + rKerτ+xN(−d1)−KN ′(−d2)
σ

2
√
τ

= rerτΦ(Kex)− rv −Ke−d
2
2/2

√
2π

σ

2
√
τ

where the auxiliary function v was defined as in (3.100). Therefore

‖ex−∂τw‖Lp ≤ rerτ‖ex−Φ(Kex)‖Lp + r‖ex−v‖Lp +
Kσ

2
√
τ

(∫ ∞
−∞

epx
− e−pd

2
2/2

(2π)p/2
dx

)1/p

≤ rKerτ‖ex−1x≤0‖Lp + r‖v‖Lp +
Kσ

2
√
τ

(∫ ∞
−∞

e−pξ
2/2

(2π)p/2
σ
√
τ dξ

)1/p

≤ C0τ
1
2p
− 1

2 ,

where C0 > 0 is a constant independent of τ ∈ (0, T ]. Thus

‖gε(τ1, U)− gε(τ2, U)‖pLp = ε−p
∫ ∞
−∞

epx
− ∣∣(w(τ1, x)− U(x))+ − (w(τ2, x)− U(x))+

∣∣p dx

≤ ε−p
∫ ∞
−∞

epx
− |w(τ1, x)− w(τ2, x)|p dx

= ε−p‖ex−(w(τ1, ·)− w(τ2, ·))‖pLp .

Hence

‖gε(τ1, U)− gε(τ2, U)‖Lp ≤ ε−1

∫ τ2

τ1

‖ex−∂τw(τ, ·)‖Lp dτ ≤ ε−1C0|τ1 − τ2|
p+1
2p ,

as claimed. The proof of lemma follows. ♦
Similarly as in the case of a linear PIDE, applying Lemmas 3.6.4, 3.6.6, 3.6.3, and

Proposition 3.6.5 we obtain the following existence and uniqueness result for the nonlinear
penalized PIDE (3.107).

Theorem 3.6.10 Assume ν is an admissible activity Lévy measure with the shape pa-
rameters α < 3 and either µ > 0, D± ∈ R, or µ = 0 and D− + 1 < 0 < D+. Let
Xγ = L p

2γ(R) be the space of Bessel potentials where 1
2
≤ γ < 1 and α−1

2
< γ < p+1

2p
.

Suppose that the structural condition (3.103) is fulfilled for the measure ν.
Then, for any ε > 0 and T > 0, the nonlinear penalized PIDE (3.107) has the

unique solution Uε ∈ C([0, T ), Xγ). Moreover, Uε(τ, ·) ∈ X1 = L p
2 (R) ↪→ W 2,p(R) and

∂τUε(τ, ·) ∈ Lp(R) for any τ ∈ (0, T ).
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In this section we analyzed existence and uniqueness of solutions to a partial integro-
differential equation (PIDE) in the Bessel potential space. As a model we considered a
model for pricing vanilla call and put options on underlying assets following a geometric
Lévy stochastic process. Using the theory of abstract semilinear parabolic equations we
proved existence and uniqueness of solutions in the Bessel potential space representing
a fractional power space of the space of Lebesgue p-integrable functions with respect to
the second order Laplace differential operator. We generalized known existence results
for a wider class of Lévy measures including those having strong singular kernel. We
also proved existence and uniqueness of solutions to the penalized PIDE representing
approximation of the linear complementarity problem arising in pricing American style
of options.



Chapter 4

Numerical Methods

The aim of this chapter is to propose numerical schemes for solving PIDEs . The methods
of discretization are based on Finite Difference methods and Galerkin methods.

4.1 Finite Difference Methods

4.1.1 Implicit-explicit numerical discretization scheme for the
Classical PIDE

Our aim is to solve numerically LPIDEV
PIDE(t, St) = 0 i.e

∂V PIDE

∂t
+

1

2

∂2V PIDE

∂2S
S2
t−σ

2 + St−r
∂V PIDE

∂S
− rV (4.1)

+

∫
R
V PIDE(t, St− + y)− V PIDE(t−, St−)− y∂V

PIDE

∂S
ν( dy) = 0.

We make the following transformations: V PIDE(t, St) = e−rτu(τ, x), where τ = T −
t, x = ln( St

S0
) and get

∂u

∂τ
=

1

2

∂2u

∂2x
σ2 +

(
r − 1

2
σ2

)
∂u

∂x
+

∫
R
u(τ, x+ z)− u(τ, x)− (ez − 1)

∂u

∂x
ν( dz).

In order to solve this equation numerically, the domain of integration of the integral
term needs to be truncated into a bounded interval and because the Variance Gamma pro-
cess is a jump process of infinite activity, the small jumps of the initial Lévy process need
to be approximated by a process of finite activity, namely the Brownian Motion. The Lévy
process obtained has a new characteristic triplet given by (γ(ε),

√
σ2(ε) + σ2, ν1|x|>ε),

where σ2(ε) =
∫ ε
−ε y

2ν( dy) and the drift is given by the associated martingale condition.
The scheme proposed in [83] is the explicit-implicit finite difference scheme. The idea is
to separate Lu into two parts, the differential part Du and the integral part Ju. The
operator then becomes in this case:

Lu(τ, x) = Du(τ, x) + Ju(τ, x), (4.2)

63
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where

Duτ, x) = −
(
σ2(ε) + σ2

2
− r + α

)
∂u

∂x
(τ, x) +

σ2(ε) + σ2

2

∂2u

∂x2
(τ, x)− λu(τ, x), (4.3)

Ju(τ, x) =

∫ Br

Bl

u (τ, x+ y) ν ( dy) 1|y|>ε, (4.4)

α =

∫ Br

Bl

(ey − 1)ν( dy)1|y|>ε, λ =

∫ Br

Bl

ν( dy)1|y|>ε. (4.5)

The localized problem becomes:

∂f

∂τ
− Lu = 0, (τ, x) ∈ [0, T ]× (−A,A) (4.6)

u(0, x) = h(x), x ∈ (−A,A), (4.7)

u(τ, x) = g(τ, x), x /∈ (−A,A). (4.8)

In [83], it is shown that the best choice for g(τ, x) is h(x + rτ). Let {uni } be the
numerical solution of the scheme proposed and define a uniform grid:

Q∆t,∆x =
{

(τn, xi) : τn = n∆t, n = 0, 1, ...M, xi = −A+ i∆x, i ∈ Z,∆t = T
M
,∆x = 2A

N

}
and choose Kl, Kr such that [Bl, Br] ⊂ [(Kl − 1/2)∆x, (Kr + 1/2)∆x].

Then,

α ≈ α̂ =
Kr∑
j=Kl

(eyj − 1)νj1|yj |>ε, λ ≈ λ̂ =
Kr∑
j=Kl

νj1|yj |>ε, (4.9)

∫ Br

Bl

u (τ, xi + y) ν ( dy) 1|y|>ε ≈
Kr∑
j=Kl

νjui+j1|yj |>ε, (4.10)

where νj ≈
∫ (j+1/2)∆x

(j−1/2)∆x

ν ( dy) ≈ 0.5∆x(ν((j − 1/2)∆x) + ν((j + 1/2)∆x)) (4.11)

(
∂u

∂x
)i ≈

{
ui+1−ui

∆x
if (σ

2(ε)
2
− r + α̂) < 0,

ui−ui−1

∆x
if (σ

2(ε)
2
− r + α̂) ≥ 0

(4.12)

In order to approximate ∂u
∂x

(τ, x+ y) we need the finite difference approximations

(
∂u

∂x
)i+j ≈

{
ui+j+1−ui+j

∆x
if (σ

2(ε)
2
− r + α̂) < 0,

ui+j−ui+j−1

∆x
if (σ

2(ε)
2
− r + α̂) ≥ 0

(4.13)

(
∂2u

∂x2

)
i

≈ ui+1 − 2ui + ui−1

(∆x)2
, (4.14)(

∂u

∂τ

)
i

≈ un+1
i − uni

∆t
. (4.15)
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Then replacing all these quantities in the problem (4.6)-(4.8) the algorithm becomes:

Initialization: (4.16)

u0
i = h(xi), i ∈ {0, 1..., N} , (4.17)

u0
i = g(0, xi), i /∈ {0, 1..., N} . (4.18)

For n=0,....M-1: (4.19)

un+1
i − uni

∆t
= (D∆u

n+1)i + (J∆u
n)i, i ∈ {0, 1..., N} , (4.20)

un+1
i = g((n+ 1)∆t, xi), i /∈ {0, 1..., N} , (4.21)

where

(D∆u
n+1) = −

(
σ2(ε) + σ2

2
− r + α̂

)
un+1
i+1 − un+1

i

∆x
+
σ2(ε) + σ2

2

un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2

−λ̂un+1
i , (4.22)

(J∆u
n)i =

Kr∑
j=Kl

νju
n
i+j1|yj |>ε. (4.23)

Remember that according to [83], the sum

(J∆u
n)i =

Kr∑
j=Kl

νju
n
i+j1|yj |>ε, i = 0, 1, 2..., N. (4.24)

requires a lot of computational effort. More specifically it takes O(N2) operations, be-
cause in fact when we discretize the domain of the truncated integral we use the same
step ∆x. Let

x = (x1, x2, x3, ..., xn) , (4.25)

then its discrete Fourier transform is

〈x〉k =
n∑
j=1

xje
− 2πi

n
(j−1)(k−1), k = 1, 2, 3..., n. (4.26)

Also we can define the discrete inverse Fourier Transform

xj = 〈〈x〉〉−1
j =

n∑
k=1

〈x〉k e
2πi
n

(j−1)(k−1), j = 1, 2, 3..., n. (4.27)

If y = (y1, y2, y3, ..., yn) is another vector then the discrete convolution of x and y is
given by

cj =
n∑
k=1

xkyj+1−k, j = 1, 2, 3..., n. (4.28)
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The indices of y are taken modulo n, i.e y0 = yn, y−1 = yn−1, ..., y2−n = y2. We have the
following property which is the discrete analogue of the convolution theorem:

〈c〉k = 〈x〉k 〈y〉k , k = 1, 2, 3..., n. (4.29)

This enable us to have

cj = 〈〈x〉 〈y〉〉−1
j , , j = 1, 2, 3..., n, (4.30)

We are going to use this property to compute (J∆u
n)i in a faster way. In order to reduce

the number of operations to O(N ln(N)), we can use the Fast Fourier Transform method
to cj. Let us build two vectors µ,v of size N̂ = N +Kr −Kl

µ = (νKr , ..., νKl , 0, ..., 0) (4.31)

v = (uKr+1, ..., uKr+N−1, uKl , ..., uKr) (4.32)

Then we can express (4.24) in terms of these two vectors.

4.1.2 Implicit-explicit numerical discretization scheme for the
nonlinear PIDE

The aim of this section is to propose a full time-space discretization scheme for solving
the nonlinear PIDE (3.81). The method of discretization is based on a finite difference
approximation of all derivatives occurring in (3.81) and approximation of the integral
term by means of the trapezoidal integration rule on a truncated domain.

In order to solve (3.81) we transform it into a nonlinear parabolic PIDE defined on
the whole R. Indeed, using the following standard transformations V (t, S) = e−rτu(τ, x),
φ(t, S) = ψ(τ, x) where τ = T − t, x = ln( S

K
) we conclude that V (t, S) is a solution to

(3.81) if and only if the function u(τ, x) solves the following nonlinear parabolic equation:

∂u

∂τ
=

1

2

σ2

(1− ρ∂ψ
∂x

)2

∂2u

∂2x
+

(
r − 1

2

σ2

(1− ρ∂ψ
∂x

)2

)
∂u

∂x
(4.33)

+

∫
R
u(τ, x+ ξ(τ, z, x))− u(τ, x)−H(T − τ, z,Kex) 1

K
e−x

∂u

∂x
(τ, x)ν( dz),

u(0, x) = h(x) ≡ Φ(Kex), (τ, x) ∈ [0, T ]× R, (4.34)

and

H(t, z, S) = S(ez − 1) + ρS[φ(t, S +H(t, z, S))− φ(t, S)], (4.35)

ξ(τ, z, x) = ln(1 +
1

K
e−xH(T − τ, z,Kex)). (4.36)
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4.1.3 Numerical scheme for solving nonlinear PIDEs with finite
activity Lévy measures

We first consider the case when the Lévy measure ν has finite activity, i.e. ν(R) < ∞.
Let us denote

λ =

∫
R
ν( dz), and ω(τ, x) =

∫
R
H(T − τ, z, S0e

x)
1

S0

e−x ν( dz).

We have λ <∞. Observe that (4.33) is equivalent to

∂u

∂τ
=

1

2

σ2

(1− ρ∂ψ
∂x

)2

∂2u

∂2x
+

(
r − 1

2

σ2

(1− ρ∂ψ
∂x

)2
− ω

)
∂u

∂x
−λu+

∫
R
u(τ, x+ ξ(τ, z, x))ν( dz).

(4.37)
We proceed to solve (4.37) by means of the semi-implicit finite difference scheme proposed
in [83]. The idea is to separate the right-hand side into two parts: the differential part
and the integral part.

Let uji = u(τj, xi), τj = j∆τ, xi = zi = i∆x for i = −N + 1, · · · , N − 1 and j =
1, · · · ,M . We approximate the differential part implicitly except of ψ(τ, x)(

∂u

∂x

)j
i

≈

{
uj+1
i+1−u

j+1
i

∆x
, if

(σji )2

2
− r + ωji < 0,

uj+1
i −uj+1

i−1

∆x
, if

(σji )2

2
− r + ωji ≥ 0,

σji =
σ

1− ρDψji
,

(
∂2u

∂x2

)j
i

≈
uj+1
i+1 − 2uj+1

i + uj+1
i−1

(∆x)2
,(

∂u

∂τ

)j
i

≈ uj+1
i − uji

∆t
.

(
∂ψ

∂x

)j
i

≈
ψji+1 − ψ

j
i

∆x
= Dψji .

As for the integral operator, first we have to truncate the integration domain to a bounded
interval [Bl, Br]. We approximate this integral by choosing integers Kl and Kr such that
[Bl, Br] ⊂ [(Kl − 1/2)∆x, (Kl + 1/2)∆x]. Then∫ Br

Bl

u(τj, xi + ξ(τj, zi, xi)) ν( dz) ≈
Kr∑
k=Kl

u(τj, xi + ξ(τj, zk, xi))νk, (4.38)

where νk = 1
2

(
ν(zk+1/2) + ν(zk−1/2)

)
∆x. Analogously,

ωji ≈
e−xi

K

Kr∑
k=Kl

H(T − τj, zk, Kexi)νk, and λ ≈
Kr∑
k=Kl

νk,

where ξ(τ, z, x) is given as in (4.36).
Inserting the finite difference approximations of derivatives of u into (4.37) we obtain

uj+1
i − uji

∆t
=

1

2
(σji )

2u
j+1
i+1 − 2uj+1

i + uj+1
i−1

(∆x)2
− λuj+1

i (4.39)

+(r − 1

2
(σji )

2 − ωji )
uj+1
i+1 − u

j+1
i

∆x
+

Kr∑
k=Kl

u(τj, xi + ξ(τj, zk, xi))νk,
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provided that 1
2
(σji )

2 − r + ωji < 0. Similarly, we can derive difference equation for the

case 1
2
(σji )

2 − r + ωji ≥ 0. If we define coefficients βji±, and βji as follows:

βji± = − ∆τ

2(∆x)2
(σji )

2 − ∆τ

∆x

(
r − 1

2
(σji )

2 − ωji
)±

, (4.40)

βji = 1 + ∆τλ− (βji− + βji+), (4.41)

where (a)+ = max(a, 0), (a)− = min(a, 0), then the tridiagonal system of linear equations
for the solution uj = (uj−N+1, · · · , u

j
N−1)T , j = 0, · · · ,M , reads as follows:

u0
i = h(xi), for i = −N + 1, · · · , N − 1,

uj+1
i = g(τj+1, xi), for i = −N + 1, · · · ,−N/2− 1,

βji+u
j+1
i+1 + βji u

j+1
i + βji−u

j+1
i−1 = uji + ∆τ

Kr∑
k=Kl

u(τj, xi + ξ(τj, zk, xi))νk, (4.42)

for i = −N/2 + 1, · · · , N/2− 1,

uj+1
i = g(τj+1, xi), for i = N/2, · · · , N − 1,

where
ξ(τj, zk, xi) = ln(1 + S−1

0 e−xiH(T − τj, zk, S0e
xi)),

and g is a function of points xi lying outside the localization interval. Following Proposi-
tion 4.3.1 in [83] , the recommended choice is g(τ, x) = h(x+rτ) = Φ(S0e

rτ+x). The term
u(τj, xi + ξ(τj, zk, xi)) entering the sum in the right-hand side of (4.42) is approximated
by means of the first order Taylor series expansion:

u(τj, xi + ξ(τj, zk, xi)) ≈ uji +
uji+1 − u

j
i

∆x
ξ(τj, zk, xi).

4.1.4 Numerical scheme for solving nonlinear PIDEs with infi-
nite activity Lévy measures

Next we consider the case when the Lévy measure has infinite activity, e.g. the Variance
Gamma process where its Lévy density explodes at zero and ν(R) =∞. Equation (4.33)
is equivalent to

∂u

∂τ
=

1

2

σ2

(1− ρ∂ψ
∂x

)2

∂2u

∂2x
+

(
r − 1

2

σ2

(1− ρ∂ψ
∂x

)2
− ω

)
∂u

∂x

+

∫
R
u(τ, x+ ξ(τ, z, x))− u(τ, x)ν( dz). (4.43)

Equation (4.43) differs from (4.37) as the term u(τ, x) is contained in the integral part
because λ =

∫
R ν( dz) = ∞. Proceeding similarly as for discretization of (4.37) we can

solve (4.43) numerically by means of the semi-implicit finite difference scheme. If the
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coefficients βji± are defined as in (4.40) and βji = 1− (βji−+βji+), then the solution vector

uj = (uj−N+1, · · · , u
j
N−1)T , j = 0, · · · ,M , is a solution to the following tridiagonal system

of linear equations:

u0
i = h(xi), for i = −N + 1, · · · , N − 1,

uj+1
i = g(τj+1, xi), for i = −N + 1, · · · ,−N/2− 1, (4.44)

βji+u
j+1
i+1 + βji u

j+1
i + βji−u

j+1
i−1 = uji + ∆τ

Kr∑
k=Kl

(u(τj, xi + ξ(τj, zk, xi))− u(τj, xi)) νk,

for i = −N/2 + 1, · · · , N/2− 1,

uj+1
i = g(τj+1, xi), for i = N/2, · · · , N − 1.

The term u(τj, xi + ξ(τj, zk, xi)) − u(τj, xi) entering the sum in the right-hand side of
(4.44) is again approximated by means of the first order Taylor series expansion, i.e.

u(τj, xi + ξ(τj, zk, xi))− u(τj, xi) ≈
uji+1 − u

j
i

∆x
ξ(τj, zk, xi).

4.1.5 Numerical results

In this section we present results of numerical experiments using the finite difference
scheme described in Section 4.1 for the case of an European put option, i.e. Φ(S) =
(K − S)+. As for the Lévy process, we considered the Variance Gamma process with
parameters θ = −0.33, σ = 0.12, κ = 0.16, and other option pricing model parameters:
r = 0, K = 100, T = 1. Numerical discretization parameters were chosen as follows:
∆x = 0.01,∆t = 0.005. Since the Variance Gamma process has infinite activity, we
employ the numerical discretization scheme described in Section 4.1.2. In what follows,
we present various option prices computed by means of the finite-difference numerical
scheme described in Section 4.1.1 for Black–Scholes (ρ = 0) and Frey–Stremme model
(ρ > 0) and their jump-diffusion PIDE generalizations.

In Fig. 4.1 we show the comparison of European put option prices between the
classical PIDE and the linear Black–Scholes model, and comparison between the classical
PIDE and the Frey–Stremme PIDE model for the case when the large trader’s influence
is small, ρ = 0.001. In Fig. 4.2 we depict the dependence of the implied volatilities as
decreasing functions of the strike price K for the Frey–Stremme model and its PIDE
generalizations. We can observe that the implied volatilities for the Frey–Stremme PIDE
model are always higher when varying the strike price of the European Put option.

Numerical values of option prices for various models and parameter settings are sum-
marized in Tables 4.1 and 4.2. The numerical results confirm our expectation that as-
suming risk arising from sudden jumps in the underlying asset process yields a higher
option price when comparing to the Frey–Stremme model option price.

In Fig. 4.3 (left) we compare European put option prices V (0, S) computed by means
of the Black–Scholes and Frey-Stremme models depending on the parameter ρ measuring
influence of a large trader. We can observe that the price of the European put option
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Figure 4.1: Comparison of European put option prices between the classical PIDE and
the linear Black–Scholes model (left). Comparison between the classical PIDE and the
Frey–Stremme PIDE model (right).
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Figure 4.2: Comparison of implied volatilities between the Frey–Stremme model, classical
PIDE and Frey–Stremme PIDE generalization.
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Table 4.1: European put option prices V (0, S) for the Black-Scholes and Frey–Stremme
models with ρ = 0.2 and their PIDE generalizations.

B-S F-S B-S PIDE F-S PIDE
S ν = 0, ρ = 0 ν = 0, ρ 6= 0 ν 6= 0, ρ = 0 ν 6= 0, ρ 6= 0

61.8783 38.1217 38.1258 38.2297 38.8234
67.032 32.9691 32.9763 33.4319 34.1889
72.6149 27.3972 27.4207 28.4887 29.4425
78.6628 21.4275 21.5118 23.5224 24.6911
85.2144 15.2547 15.4835 18.6979 20.0701
92.3116 9.42895 9.85754 14.2078 15.7321
100. 4.78444 5.32697 10.243 11.8282
108.329 1.88555 2.34727 6.95353 8.48304
117.351 0.550422 0.814477 4.41257 5.77178
127.125 0.114716 0.216426 2.60009 3.70615
137.713 0.016615 0.043112 1.41444 2.2351

Table 4.2: European put option prices V (0, S) for the Frey–Stremme and Frey-Stremme
PIDE models for various values of ρ.

F-S F-S PIDE F-S F-S PIDE F-S F-S PIDE
S ρ = 0.1 ρ = 0.1 ρ = 0.2 ρ = 0.2 ρ = 0.3 ρ = 0.3

61.8783 38.1257 38.4958 38.1258 38.8234 38.1373 39.2259
67.032 32.9759 33.7763 32.9763 34.1889 33.019 34.6865
72.6149 27.4191 28.9293 27.4207 29.4425 27.5623 30.049
78.6628 21.5061 24.0698 21.5118 24.6911 21.8893 25.4118
85.2144 15.4688 19.3477 15.4835 20.0701 16.2645 20.896
92.3116 9.83127 14.9344 9.85754 15.7321 11.0916 16.6367
100. 5.29421 10.9999 5.32697 11.8282 6.8043 12.7672
108.329 2.31882 7.68096 2.34727 8.48304 3.68338 9.4005
117.351 0.797286 5.05246 0.814477 5.77178 1.72932 6.61053
127.125 0.209195 3.11214 0.216426 3.70615 0.693804 4.41995
137.713 0.040995 1.78547 0.043112 2.2351 0.234949 2.79821
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increases with respect to ρ, as expected. Furthermore, the price computed from the
Frey–Stremme PIDE model is larger than the one obtained from the linear Black–Scholes
equation. Moreover, the price computed from Frey–Stremme PIDE model is higher than
the one computed by means of the nonlinear Frey–Stremme model. This is due to the
fact that the jump part of the underlying asset process enhances risk, and, consequently
increases the option value. Fig. 4.3 (right) shows comparison of the option prices for the
Black–Scholes and Frey–Stremme PIDE model for various values of ρ.

4.2 Galerkin Methods

4.2.1 Classical PIDE

Galerkin methods consist of representing the solution u using a basis of functions (see for
example [24]):

u(τ, x) =
∑
i≥1

ai(τ)ei(x). (4.45)

Then we approximate the solution by restricting to a finite number of functions:

uN(τ, x) =
N∑
i≥1

ai(τ)ei(x). (4.46)

If the basis functions ei(x) have derivatives known in closed form then this repre-
sentation has the advantage of being able to estimate the Greeks of the options and to
compute values of the solution in points that are not necessarily on the uniform grid .

4.2.1.1 Radial Basis Function Interpolation Scheme

Originally proposed by Kansa (1990) in order to approximate partial derivatives using
Radial Basis Functions, this numerical scheme became more popular with Fausshauer
et al. (2004a,b), Larsson et al. (2008), Pettersson et al. (2008) and Hon and Mao
(1999) which have used this meshless technique to solve Black-Scholes equations to price
European and American options.

In order to begin the numerical scheme we must first obtain an approximation of the
payoff function using the RBF interpolant. So the idea is to choose the interpolant points
xj, j = 1, 2, ...N and approximate the solution u(τ, x) using the RBF interpolant for any
fixed τ :

u(τ, x) ≈
N∑
j=1

pj(τ)φ(||x− xj||2). (4.47)
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Then it follows that

∂u(τ, x)

∂τ
≈

N∑
j=1

∂pj(τ)

∂τ
φ(|x− xj|), (4.48)

∂u(τ, x)

∂x
≈

N∑
j=1

pj(τ)
∂φ(|x− xj|)

∂x
, (4.49)

∂2u(τ, x)

∂x2
≈

N∑
j=1

pj(τ)
∂2φ(|x− xj|

∂x2
. (4.50)

As in [22] we are going to use the cubic spline, i.e φ(|x− xj|) = |x− xj|3. Then

∂φ(|x− xj|)
∂x

=

{
3|x− xj|2 if x− xj > 0
−3|x− xj|2 if x− xj < 0,

(4.51)

∂2φ(|x− xj|)
∂x2

= 6|x− xj|. (4.52)

So we start by choosing equally spaced points

xj = −A+ j∆x, j = 0, 1, 2...N − 1, (4.53)

where ∆x = xMax−xMin

N
. Also we construct the following matrices Φ,Φx,Φxx, which are

the matrices of the partial derivatives of the cubic spline and finally a matrix valued
function Φ(y) which has generic element (φ(|xi + y − xj|))i,j=0,1,..,N .

In order to solve the usual PIDE we make the following transformations V PIDE(t, St) =
e−rτu(τ, x), where τ = T − t, x = ln( St

S0
) and get

∂u

∂τ
=
σ2

2

∂2u

∂2x
+

(
r − 1

2
σ2

)
∂u

∂x
+

∫
R
u(τ, x+ z)− u(τ, x)− (ez − 1)

∂u

∂x
ν( dz).(4.54)

Defining

λ =

∫
R
ν( dz), α =

∫
R

(ez − 1) ν( dz), (4.55)

we arrive at the following equation

∂u

∂τ
=
σ2

2

∂2u

∂2x
+

(
r − σ2

2
− α

)
∂u

∂x
− λu(τ, x) +

∫
R
u(τ, x+ z)ν( dz). (4.56)

Since u(τ, x1) = K for x1 = −A and u(τ, xN+1) = 0 for xN+1 = A, we must have

N+1∑
j=1

pj(τ)|x1 − xj|3 = K, (4.57)

N+1∑
j=1

pj(τ)|xN+1 − xj|3 = 0. (4.58)
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Then if we substitute ũ(τ, x) by u(τ, x) in (4.56) and demand that the PIDE be
satisfied in each interpolation point xj, we arrive at the following system of equations for
the vector p(τ) = (p1(τ), p2(τ), .., pN(τ), pN+1(τ))(

Φ
∂p(τ)

∂τ

)
1

= K, (4.59)(
Φ
∂p(τ)

∂τ

)
i

=
σ2

2
(Φxxp(τ))i +

(
r − σ2

2
− α

)
(Φxp(τ))i − λ (Φp(τ))i

+

∫
R

(Φ(z)p(τ))i ν( dz), i = 2, 3, ...N, (4.60)(
Φ
∂p(τ)

∂τ

)
N+1

= 0, (4.61)

Φ
∂p(τ)

∂τ
=

(
σ2

2
Φxx +

(
r − σ2

2
− α

)
Φx − λΦ +

∫
R

Φ(z)ν( dz)

)
p(τ),

∂p(τ)

∂τ
= D

(
σ2

2
Φuxx +

(
r − σ2

2
− α

)
Φx − λΦ +

∫
R

Φ(z)ν( dz)

)
p(τ), (4.62)

where D = Φ−1 = P−1U−1P−1 and P is an N ×N matrix as it was shown in ([18])

P =


|x1 − x1| |x1 − x2| |x1 − x3| . . . |x1 − xN |
|x2 − x1| |x2 − x2| |x1 − x3| . . . |x2 − xN |

...
. . .

...
|xN − x1| |xN − x2| |xN − x3| . . . |xN − xN |,

 (4.63)

and U is a near tri-diagonal matrix N ×N matrix.

U =



∆x− (N − 1)∆x ∆x
2

0 . . . 0 (N−1)∆x
2

∆x
2

2∆x ∆x
2

0 . . . 0
0 ∆x

2
2∆x ∆x

2
. . . 0

...
. . .

...
0 0 . . . ∆x

2
2∆x ∆x

2
(N−1)∆x

2
0 . . . 0 ∆x

2
∆x− (N − 1)∆x


(4.64)

and P−1 is also known in explicit form

P−1 =



∆x−(N−1)∆x

2(N−1)(∆x)2
1

2∆x
0 . . . 0 1

2(N−1)∆x
1

2∆x
− 1

∆x
1

2∆x
0 . . . 0

0 1
2∆x

− 1
∆x

1
2∆x

. . . 0
...

. . .
...

0 0 . . . 1
2∆x

− 1
∆x

1
2∆x

1
2(N−1)∆x

0 . . . 0 1
2∆x

∆x−(N−1)∆x

2(N−1)(∆x)2


. (4.65)
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Also

∫
R

Φ(z)ν( dz) ≈
∫ Br

Bl

Φ(z)ν( dz) ≈


G(x1 − x1) G(x1 − x2) . . . G(x1 − xN)
G(x2 − x1) G(x2 − x2) . . . G(x2 − xN)
G(x3 − x1) G(x3 − x2) . . . G(x3 − xN)

...
. . .

G(xN − x1) G(xN − x2) . . . G(xN − xN)

 ,
where ∫ Br

Bl

u (τ, xi − xj + z) ν ( dz) 1|z|>ε ≈
Kr∑
k=Kl

νkui−j+k1|yk|>ε = G(∆x(i− j)), (4.66)

and as usual

νj ≈
∫ (j+1/2)∆x

(j−1/2)∆x

ν ( dy) ≈ 0.5∆x(ν((j − 1/2)∆x) + ν((j + 1/2)∆x)). (4.67)

Then, discretising also on time we obtain the implicit scheme

N+1∑
j=1

pj(τ)|x1 − xj|3 = K, (4.68)

p(τj+1)− p(τj)
∆τ

= D

(
σ2

2
Φuxx +

(
r − σ2

2
− α

)
Φx − λΦ +

∫
R

Φ(z)ν( dz)

)
p(τj+1),

j = 1, ...M, (4.69)
N+1∑
j=1

pj(τ)|xN+1 − xj|3 = 0. (4.70)

Or in matrix notation

Φ1p(τj+1) = K, (4.71)

(I −∆τΘ)p(τj+1) = p(τj), j = 1, ...M, (4.72)

ΦN+1p(τj+1) = 0. (4.73)

where

Θ = D

(
σ2

2
Φuxx +

(
r − σ2

2
− α

)
Φx − λΦ +

∫
R

Φ(z)ν( dz)

)
. (4.74)

Or in a more compact way

Bp(τj+1) = p(τj) + b, j = 1, ...M, (4.75)

where

B =

 . . . Φ1 . . .
. . . (I −∆τΘ)N−1,N+1 . . .
. . . ΦN+1 . . .

 (4.76)
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and

b =


K
0
...
0

 . (4.77)

4.2.1.2 Different choice of the Interpolant

Since the matrix A is ill conditioned and the former interpolant is conditionally positive
definite of order 2, one alternative is to consider the following radial basis functions
interpolants

u(τ, x) ≈
N∑
j=1

pj(τ)|x− xj|3 +
2∑

k=1

γk(τ)gk(x), (4.78)

where g1(x) = 1, g2(x) = x.
Then as before we demand that at every point (τi, xi) the equation (4.56) is satisfied

and if we impose the additional set of constraints
∑N

j=1 ṗj(τ)gk(xj) = 0, k = 1, 2 we arrive
at an augmented system of equations.

If we define p∗(τ) = (p1(τ), p2(τ), .., pN(τ), γ1(τ), γ2(τ)).

∂

∂τ

(
N∑
j=1

pj(τ)|x− xj|3 +
2∑

k=1

γk(τ)gk(x)

)
=
σ2

2

∂2

∂x2

(
N∑
j=1

pj(τ)|x− xj|3 +
2∑

k=1

γk(τ)gk(x)

)

+

(
r − σ2

2
− α

)
∂

∂x

(
N∑
j=1

pj(τ)|x− xj|3 +
2∑

k=1

γk(τ)gk(x)

)

−λ

(
N∑
j=1

pj(τ)|x− xj|3 +
2∑

k=1

γk(τ)gk(x)

)

+

∫
R

N∑
j=1

pj(τ)|x+ z − xj|3 +
2∑

k=1

γk(τ)gk(x+ z)ν( dz), x = xi, i = 1, 2, .., N, (4.79)

N∑
j=1

ṗj(τ)gk(xj) = 0, k = 1, 2. (4.80)

Then  ΦN×N g1 g2

gT1 0 0
gT2 0 0

 ṗ∗ =

(
σ2

2
Φ∗xx + βΦ∗x − λΦ∗ +

∫
R Φ∗(z)ν( dz)

O2×N+2

)
p∗, (4.81)

where β = r − σ2

2
− α,Φ∗ = (Φ, g(x)),Φ∗x = (Φx;ON×2),Φ∗xx = (Φx;ON×1; 1N×1), g(x) =

(g1(x), g2(x)) and g1, g2 are N-dimensional column vectors.
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4.2.2 Application to Illiquid Options Market

As in [22] we are going to use the cubic spline. Then

∂φi(|x− xj|)
∂x

=

{
3|x− xj|2 if x− xj > 0
−3|x− xj|2 if x− xj < 0,

(4.82)

∂2φi(|x− xj|)
∂x2

= 6|x− xj|. (4.83)

So we start by choosing equally spaced points

xj = −A+ j∆x, j = 0, 1, 2...N − 1, (4.84)

where ∆x = xMax−xMin

N
.

Also we construct the following matrices Φ,Φx,Φxx, which are the matrices of the
partial derivatives of the cubic spline and finally a matrix valued function Φ(y) with
generic element (φi(|xi + y − xj|))i,j=1,2,..,N .

The equation we need to solve is

∂u

∂τ
=

1

2

∂2u

∂2x

σ2

1− ρ∂ψ(τ,x)
∂x

+

(
r − 1

2

σ2

1− ρ∂ψ(τ,x)
∂x

)
∂u

∂x
(4.85)

+

∫
R
u(τ, x+ ξ(z, x))− u(τ, x)−H(t, z, S0e

x (ez − 1))
1

S0

e−x
∂u

∂x
ν( dz).

Defining

α =

∫ Br

Bl

H(t, z, S0e
x)

1

S0

e−xν( dz)1|z|>ε, λ =

∫ Br

Bl

ν( dz)1|z|>ε, σ
2(ε) =

∫
R
y2ν( dy),

we arrive at the alternative format

∂u

∂τ
=

1

2

∂2u

∂2x

σ2 + σ2(ε)

1− ρ∂ψ(τ,x)
∂x

+

(
r − 1

2

σ2 + σ2(ε)

1− ρ∂ψ(τ,x)
∂x

− α

)
∂u

∂x
(4.86)

−λu(τ, x) +

∫
R
u(τ, x+ ξ(z, x))ν( dz). (4.87)

Σ =



1
2

σ2+σ2(ε)

1−ρ ∂ψ(τ1,x1)
∂x

0 0 . . . 0

0 1
2

σ2+σ2(ε)

1−ρ ∂ψ(τ2,x2)
∂x

0 . . . 0

...
. . .

...

0 0 0 . . . 1
2

σ2+σ2(ε)

1−ρ ∂ψ(τN ,xN )

∂x

 , (4.88)
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where

∂ψ(τi, xi)

∂x
≈ ψ(τi, xi−1 + ∆x)− ψ(τi, xi−1)

∆x
. (4.89)

Also ∫ Br

Bl

H(t, z, S0e
x)

1

S0

e−xν( dz)1|z|>ε ≈
N∑
d=1

H(τj, zd, S0e
xi)ν(z)1|zd|>ε = Tj,i, (4.90)

with

T =


T1,1 T1,2 T1,3 . . . T1,N

T2,1 T2,2 T2,3 . . . T2,N
...

. . .
...

TN,1 TN,2 TN,3 . . . TN,N

 . (4.91)

If we substitute ũ(τ, x) by u(τ, x) in (4.56) and demand that the PIDE be satisfied in
each interpolation point xj, then we arrive at the following system of equations for the
vector p(τ) = (p1(τ), p2(τ), .., pN(τ))

Φ
∂p(τ)

∂τ
=

(
ΣΦxx + (rI − Σ− T ) Φx − λΦ +

∫
R

Φ(z)ν( dz)

)
p(τ),

∂p(τ)

∂τ
= D

(
ΣΦxx + (rI − Σ− T ) Φx − λΦ +

∫
R

Φ(z)ν( dz)

)
p(τ). (4.92)

Since we need to find the inverse of Φ which may be ill conditioned, we factorize this
matrix as Φ = PUP . This way we define D = Φ−1 = P−1U−1P−1, where P is an N ×N
matrix

P =


|x1 − x1| |x1 − x2| |x1 − x3| . . . |x1 − xN |
|x2 − x1| |x2 − x2| |x1 − x3| . . . |x2 − xN |

...
. . .

...
|xN − x1| |xN − x2| |xN − x3| . . . |xN − xN |

 (4.93)

and U is a near tri-diagonal matrix N ×N matrix

U =



∆x− (N − 1)∆x ∆x
2

0 . . . 0 (N−1)∆x
2

∆x
2

2∆x ∆x
2

0 . . . 0
0 ∆x

2
2∆x ∆x

2
. . . 0

...
. . .

...
0 0 . . . ∆x

2
2∆x ∆x

2
(N−1)∆x

2
0 . . . 0 ∆x

2
∆x− (N − 1)∆x


(4.94)
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and P−1 is also known in explicit form

P−1 =



∆x−(N−1)∆x

2(N−1)(∆x)2
1

2∆x
0 . . . 0 1

2(N−1)∆x
1

2∆x
− 1

∆x
1

2∆x
0 . . . 0

0 1
2∆x

− 1
∆x

1
2∆x

. . . 0
...

. . .
...

0 0 . . . 1
2∆x

− 1
∆x

1
2∆x

1
2(N−1)∆x

0 . . . 0 1
2∆x

∆x−(N−1)∆x

2(N−1)(∆x)2


. (4.95)

Also

∫
R

Φ(z)ν( dz) ≈
∫ Br

Bl

Φ(z)ν( dz) ≈


G(x1 − x1) G(x1 − x2) . . . G(x1 − xN)
G(x2 − x1) G(x2 − x2) . . . G(x2 − xN)
G(x3 − x1) G(x3 − x2) . . . G(x3 − xN)

...
. . .

G(xN − x1) G(xN − x2) . . . G(xN − xN)

 ,
where∫ Br

Bl

u (τ, xi − xj + ξ(z, x)) ν ( dz) 1|z|>ε ≈
N∑
k=1

νku(∆τ,∆x(i− j) + b(k∆x, i∆x))1|zk|>ε

= G(∆x(i− j)), (4.96)

where as usual

νj ≈
∫ (j+1/2)∆x

(j−1/2)∆x

ν ( dy) ≈ 0.5∆x(ν((j − 1/2)∆x) + ν((j + 1/2)∆x)). (4.97)

4.3 Study of the nonlinear PIDE when ρ is small

Now we assume ρ is small enough such that equation (3.81) can be thought of as a small
perturbation of the classical PIDE (3.84). We compute the first order correction to the
solution of the classical PIDE for a European option under the effects of feedback when
ρ is small. When ρ = 0 we obtain V PIDE(t, St), which we denote as the solution of
the classical PIDE. Then, constructing a regular perturbation series, next proposition
gives us an approximation of H(t, y, St−) when the large trader is a small fraction of the
economy.

Proposition 4.3.1 Assume that ρ is small. Then

H(t, y, St−) ≈ y + ρSt− (φ(t, St− + y)− φ(t, St−)) (4.98)

Proof. If we write H(t, y, St−) as a a function of ρ and making a first order Taylor
expansion, we get

g(ρ) = g(0) + ρg′(0) +O(ρ2), (4.99)
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where

g(ρ) = y + ρSt− (φ(t, S + g(ρ))− φ(t, S)) . (4.100)

Differentiating with respect to ρ yields

g′(ρ) = St− (φ(t, S + g(ρ))− φ(t, S)) + ρSt−
∂φ

∂S
(t, S + g(ρ))g′(ρ). (4.101)

Setting ρ = 0, we obtain

g′(0) = St− (φ(t, S + g(0))− φ(t, S)) + ρSt−
∂φ

∂S
(t, S + g(0))g′(0). (4.102)

Since g(0) = y and since 1− ρS ∂φ
∂S
> 0 we get

g′(0) = St− (φ(t, S + y)− φ(t, S)) , (4.103)

which after inserting into Taylor’s formula entails the claim.
Then, constructing a regular perturbation series

V (t, St) = V0(t, St) + ρV1(t, St) +O(ρ2) (4.104)

and defining

LPIDE =
∂V

∂t
+
σ2

2
S2
t−
∂2V

∂S2
+ rSt−

∂V

∂S
− rV (4.105)

+

∫
R
V (t, St− + y)− V (t−, St−)− y∂V

∂S
ν( dy), (4.106)

we expand (3.81) for small ρ and obtain

O(ρ2) = LPIDEV (t, St) + σ2S3
t−
∂φ

∂S
(t, St−)ρ

∂2V

∂S2
(t, St)

+

∫
R
ρSt−

(
∂V

∂S
(t, St− + y)− ∂V

∂S
(t, St−)

)
(φ(t, St− + y)− φ(t, St−)) ν, (4.107)

since for

j(ρ) = v(t, St−)2 =
σ2(

1− ρSt− ∂φ∂S (t, St−)
)2

we have

j(ρ) = σ2 + 2σ2

(
St−

∂φ

∂S
(t, St−)

)
ρ+O(ρ2).

Consequently, using (4.104) and since LPIDEV0 = 0, V1(t, St) satisfies

LPIDEV1(t, St) = LPIDE
1

ρ

(
V (t, St)− V0(t, St)−O(ρ2)

)
.
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Then,using (4.107) and simplifying we get

LPIDEV1(t, St) = −σ2S3
t−
∂φ

∂S
(t, St−)

∂2V

∂S2
(t, St)− I,

where

I =

∫
R
St−

(
∂V

∂S
(t, St− + y)− ∂V

∂S
(t, St−)

)
(φ(t, St− + y)− φ(t, St−)) ν( dy).

Notice that we can write this as

I = I0 + I1, (4.108)

where

I0 =

∫
R
St−

(
∂V0

∂S
(t, St− + y)− ∂V0

∂S
(t, St−)

)
(φ(t, St− + y)− φ(t, St−)) ν,(4.109)

I1 =

∫
R
ρSt−

(
∂V1

∂S
(t, St + y)− ∂V1

∂S
(t, St)

)
(φ(t, St− + y)− φ(t, St−)) ν. (4.110)

First we need to solve LPIDEV0(t, St) = 0 i.e

∂V0

∂t
+
σ2

2
S2
t−
∂2V0

∂S2
+ St−r

∂V0

∂S
− rV0

+

∫
R
V0(t, St− + y)− V0(t−, St−)− y∂V0

∂S
ν( dy) = 0.

Then solve the following equation

LPIDEV1(t, St) = −σ2S3
t−
∂φ

∂S
(t, St−)

∂2V0

∂S2
(t, St)− I0 (4.111)

−ρσ2S3
t−
∂φ

∂S
(t, St−)

∂2V1

∂S2
(t, St)− I1 (4.112)

Finally we obtain the solution when ρ is considered small

V (t, St) = V0 + ρV1(t, St).

Now we want to solve (4.112) where I0 and I1 are given by (4.109) and (4.110) respectively.
So making the usual set of transformations i.e τ = T − t, S = ln(x), uj(τ, x) =

erτVj(t, S) for j = 0, 1 and φ(t, S) = ψ(τ, x), we get the equivalent problem

∂u1

∂τ
− Lu1(τ, x) = f(u0, u1)(x),

u(0, x) = Φ(S0e
x), x ∈ R, (4.113)
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where

Lu(τ, x) =
σ2

2

∂2u

∂x2
(τ, x) +

(
r − 1

2
σ2

)
∂u

∂x
(τ, x)

+

∫
R
u(x+ z)− u(x)− (ez − 1)

∂u

∂x
(x)ν( dz), (4.114)

f(u0, u1)(x) = −σ2∂ψ

∂x
(τ, x)

(
∂2u0

∂x2
(x)− ∂u0

∂x
(x)

)
−ρσ2∂ψ

∂x
(τ, x)

(
∂2u1

∂x2
(x)− ∂u1

∂x
(x)

)
− I0 − I1, (4.115)

and

I0 =

∫
R

(
∂u0

∂x
(τ, x+ z)− ∂u0

∂x
(τ, x)

)
(ψ(τ, x+ z)− ψ(τ, x)) ν( dz), (4.116)

I1 =

∫
R
ρ

(
∂u1

∂x
(τ, x+ z)− ∂u1

∂x
(τ, x)

)
(ψ(τ, x+ z)− ψ(τ, x)) ν( dz). (4.117)

4.4 Convergence Results

This section is dedicated to analyze the convergence of the numerical scheme based on the
proposed finite difference method. First, we take into account the fact that we can have
an infinite activity process. Then, as usual, we prove consistency, stability and monotony
of the scheme. At last we obtain a convergence result for the linear PIDE.

4.4.1 Approximation by a finite activity process

Now consider the case when we have an infinite activity process such as the Variance
Gamma process described above. We can see that its Lévy density explodes at zero. For
that reason one replaces the small jumps of the process by a Brownian motion chosen so
that one gets a finite activity process. The Lévy process obtained has a new characteristic
triplet given by (γ(ε),

√
σ2(ε) + σ2, ν1|x|>ε), where σ2(ε) =

∫ ε
−ε y

2ν( dy) and the drift is
given by the associated martingale condition.

We can write the dynamics of stock’s price logarithm in the following way

dXt =

(
b(t, S0e

Xt− )− 1

2
v2(t, S0e

Xt− ) +

∫
|x|<1

ln(1 +
H(t, x, S0e

Xt− )

S0eXt−
)ν (dx)

)
dt

+v(t, S0e
Xt− ) dWt +

∫
|x|>1

ln(1 +
H(t, x, S0e

Xt− )

S0eXt−
)JX (ds, dx)

+

∫
|x|<1

ln(1 +
H(t, x, S0e

Xt− )

S0eXt−
)J̃X (ds, dx) . (4.118)
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When ρ is considered small we have

Xt = γt+ σWt +

∫ t

0

∫
|x|≥1

ln(ex + ρ(φ(t, St−e
x)− φ(t, St−)))JX (ds, dx)

+

∫ t

0

∫
|x|<1

ln(ex + ρ(φ(t, St−e
x)− φ(t, St−)))J̃X (ds, dx) , (4.119)

where γ =
(
b(t, S0e

Xt− )− 1
2
v2(t, S0e

Xt− ) +
∫
|x|<1

ln(ex + ρ(φ(t, St−e
x)− φ(t, St−)))ν (dx)

)
.

But defining the following process we get a finite activity process

Xε
t = γ(ε)t+ σ(ε)Bt + σWt +

∫ t

0

∫
|z|≥1

ln(ez + ρ(φ(t, St−e
z)− φ(t, St−)))JX (ds, dz)

+

∫ t

0

∫
|z|>ε

ln(ez + ρ(φ(t, St−e
z)− φ(t, St−)))J̃X (ds, dz) , (4.120)

where

γ(ε) = −σ
2 + σ2(ε)

2
−
∫
|z|>ε

ek(s,z) − 1− k(s, z)1{|z|<1}ν( dz), (4.121)

σ(ε) =

∫
|z|<ε

z2ν (dz) , (4.122)

k(s, z) = ln(ez + ρ(φ(t, St−e
z)− φ(t, St−))), (4.123)

and if ρ = 0 then

Xε
t = γ(ε)t+ σ(ε)Bt + σWt +

∫ t

0

∫
|z|≥1

zJX (ds, dz) +

∫ t

0

∫
|z|>ε

zJ̃X (ds, dz) ,(4.124)

γ(ε) and σ(ε) are chosen so that the eX
ε
t still remains a martingale and to keep the

total variance. Bt and Wt are independent Brownian motions. The characteristic triplet

is given by
(
γ(ε),

√
σ2(ε) + σ2, ν1|x|>ε

)
. Then we just have to proceed as in (4.42) but

where σ2 is replaced by σ2(ε) + σ2 and ν by ν1|x|>ε. We have seen that when we have
a process of infinite activity i.e.

∫
R ν( dz) = ∞ we can approximate the infinite activity

process by a finite activity process by replacing ν and σ2 appropriately. In this section
we study the error of this approximation.

Now let Xε
t be given by (4.120) and define

f ε(τ, x) = E[h(x+ rτ +Xε
τ )], (4.125)

f(τ, x) = E[h(x+ rτ +Xτ )]. (4.126)

As we have seen f ε(τ, x) satisfies

∂f ε(τ, x)

∂τ
= Lf ε(τ, x), (0, T ]× R, (4.127)

f(0, x) = h(x), ∀x ∈ R (4.128)
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where

Lf ε(τ, x) =
σ2 + σ2(ε)(

1− ρ∂ψ(τ,x)
∂x

)2

∂2f

∂x2
+

r − 1

2

σ2 + σ2(ε)(
1− ρ∂ψ(τ,x)

∂x

)2 − α

 ∂f

∂x

−λ(ε)f +

∫
|x|>ε

f (x+ ξ(z, x)) ν ( dx) , (4.129)

and

α(ε) =

∫
|z|>ε

H(t, z, S0e
x)

1

S0

e−x, ν ( dz) (4.130)

λ(ε) =

∫
|z|>ε

ν ( dz) , (4.131)

and σ2(ε) is given by (4.122).

Proposition 4.4.1 Let h be a Lipschitz function and let f and f ε be defined by (4.125)
and (4.126) respectively. Then

|f(τ, x)− f ε(τ, x)|≤
(
C +

eε

6
+ σ2(ε)

)
ε+ C

(∫
|z|>ε

e2zν( dz)

)1/2

(λ(ε))1/2

+Cλ(ε) + Cσ(ε)

(∫
1>|z|>ε

1ν( dz)

)1/2

(4.132)

Proof. Define Wτ = Yτ − (γ − γ(ε))τ . Then

|f(τ, x)− f ε(τ, x)|= |E[h(x+ Yτ )]− E[h(x+ Y ε
τ )]|

≤ |E[h(x+ Zτ )]− E[h(x+ Y ε
τ )]|

+|E[h(x+ Zτ + (γ − γ(ε))τ)]− E[h(x+ Zτ ]|

≤ Kc

∫
|z|<ε |z|

3ν( dz)

σ2(ε)
+ |E[h(x+ Zτ + (γ − γ(ε))τ)]− E[h(x+ Zτ ]|

≤ Kc

∫
|z|<ε |z|

3ν( dz)

σ2(ε)
+ c|γ − γ(ε)|τ,

where the first term of the inequality follows from [24] Proposition 6.2 and the second
since h is Lipschitz. Recall that

γ = −σ
2

2
−
∫
R
ez − 1− z1{|z|<1}ν( dz).

Then as in Theorem 5.1 in [25], we have for the first term of this inequality

|γ − γ(ε)|≤
∣∣∣∣σ2(ε)

2
−
∫
|z|<ε

ez − 1− z ν( dz)

∣∣∣∣+

∣∣∣∣∫
|z|>ε

ek(s,z) − ez − (k(s, z)− z)1|z|<1ν( dz)

∣∣∣∣
≤ eε

6

∫
|z|<ε
|z|3ν( dz) +

∣∣∣∣∫
|z|>ε

ek(s,z) − ez − (k(s, z)− z)1|z|<1ν( dz)

∣∣∣∣ .
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As for the second term we have by definition of k(s, z), given in, that (4.123)∣∣∣∣∫
|z|>ε

ek(s,z) − ez − (k(s, z)− z)1|z|<1ν( dz)

∣∣∣∣≤ ∫
|z|>ε

∣∣ek(s,z) − ez
∣∣ ν( dz)

+

∫
|z|>ε
|k(s, z)− z|1|z|<1ν( dz)

≤ I1 + I2,

where

I1 =

∫
|z|>ε

ρ|φ(t, St−e
z)− φ(t, St−)|ν( dz),

I2 =

∫
|z|>ε
| ln(1 + ρe−z(φ(t, St−e

z)− φ(t, St−)))|1|z|<1ν( dz).

As for I1 we have

I1 ≤
∫
|z|>ε
|ez − 1|ν( dz)≤ K̃

∫
|z|>ε

ez + 1ν( dz)

≤ K̃

(∫
|z|>ε

e2zν( dz)

)1/2(∫
|z|>ε

1ν( dz)

)1/2

+

(∫
|z|>ε

1ν( dz)

)
,

since ρ|φ(t, St−e
z)− φ(t, St−)| ≤ ρ|St− ∂φ∂S ||e

z − 1|.
As for I2 we have

I2≤
∫

1>|z|>ε

1

1 + ξ
e−z|ez − 1|ν( dz)

≤ Ce−ε
∫

1>|z|>ε
|z|ν( dz)

≤ Ce−εσ(ε)

(∫
1>|z|>ε

1ν( dz)

)1/2

,

where the last inequality follows from Hölder’s inequality. Then, combining these in-
equalities yields

|f(τ, x)− f ε(τ, x)|≤ C

∫
|z|<ε |z|

3ν( dz)

σ2(ε)
+
eε

6

∫
|z|<ε
|z|3ν( dz)

+C

(∫
|z|>ε

e2zν( dz)

)1/2

(λ(ε))1/2 + Cλ(ε) + Cσ(ε)

(∫
1>|z|>ε

1ν( dz)

)1/2

≤ Cε+
eε

6
εσ2(ε) + C

(∫
|z|>ε

e2zν( dz)

)1/2

(λ(ε))1/2

+Cλ(ε) + Cσ(ε)

(∫
1>|z|>ε

1ν( dz)

)1/2

.
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4.4.2 Consistency of the implict-explicit scheme

Consider the following PIDE operator H

Hu =
∂u

∂τ
− v2

2

∂2u

∂x2
−
(
r − 1

2
v2 − α

)
∂u

∂x
+ λu−

∫
R
u(τ, x+ ξ(z, x))ν( dz),(4.133)

where as before we have

λ =

∫
R
ν( dz), α =

∫
R
H(t, z, S0e

x)
1

S0

e−x ν( dz), (4.134)

and

ξ(z, x) = ln(ez + ρ
1

S0

e−xH(t, S0e
x, S0e

x (ez − 1))), (4.135)

v2 ≡ v2(τ, x) =
σ2(

1− ρ∂ψ(τ,x)
∂x

)2 , (4.136)

and also define for every i = 1, 2, .., N and j = 1, 2, ..,M the discretized scheme operator

Pk,hu =
uj+1
i − uji
k

−

(
(vji )

2

2

uji+1 − 2uji + uji−1

h2
+

(
r − 1

2
(vji )

2 − α
)
uji+1 − u

j
i

h
+ λuji

)

−∆τ
Kr∑
k=Kl

u(τj, xi + ξ(zk, xi))νk1|zk|>ε, (4.137)

where

νk =
1

2
ν ((k −∆x) 0.5) 1|k∆x|>ε +

1

2
ν ((k + ∆x) 0.5) 1|k∆x|>ε

and

vji =
σ2 + σ2(ε)(
1− ρDψji

)2 .

The following proposition tells us that the finite difference scheme constructed above is
consistent

Proposition 4.4.2 Let Pk,h be defined as in (4.137) and H as in (4.133). Then we have

|Pk,hu(τj, xi)−Hu(τ, x)| → 0 as (h, k)→ 0. (4.138)

Proof.
As we have seen before we can decompose operator H into two operators, the differ-

ential and integral operator as follows

Hu = Du+ J u, (4.139)
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where

Du =
∂u

∂τ
−
(
v2

2

∂2u

∂x2
+

(
r − 1

2
v2 − α

)
∂u

∂x
− λu

)
, (4.140)

J u = −
∫
R
u(τ, x+ ξ(z, x))ν( dz). (4.141)

As before let uji = u(τj, xi), τj = jk, xi = ih, h = ∆x, k = ∆τ and consider the discretized
scheme operator defined above (4.137), which is the sum of the differential and integral
operator i.e Pk,h = Dk,h + Jk,h, where

Dk,hu =
uj+1
i − uji
k

−

(
(vji )

2

2

uji+1 − 2uji + uji−1

h2
+

(
r − 1

2
(vji )

2 − α
)
uji+1 − u

j
i

h
− λuji

)

and

Jk,h = ∆τ
Kr∑
k=Kl

u(τj, xi + ξ(zk, xi))νk1|zk|>ε.

So, making the following Taylor Expansion around the point (τj, xi) we get

uj+1
i − uji
k

=
∂u

∂τ
+

1

2

∂2u

∂τ 2
k + o(k2),

uji+1 − u
j
i

h
=
∂u

∂x
+

1

2

∂2u

∂x2
h+

1

6

∂2u

∂x3
h2 + o(h3),

uji+1 − 2uji + uji−1

h2
=
∂2u

∂x2
+ o(h2).

Then with βji = r − 1
2
(vji )

2 − α we obtain

Dk,hu =
uj+1
i − uji
k

−

(
(vji )

2

2

uji+1 − 2uji + uji−1

h2
+

(
r − 1

2
(vji )

2 − α
)
uji+1 − u

j
i

h
− λuji

)

=
∂u

∂τ
+

1

2

∂2u

∂τ 2
k + o(k2)− (vji )

2

2

(
∂2u

∂x2
+ o(h2)

)
− βji

(
∂u

∂x
+

1

2

∂2u

∂x2
h+

1

6

∂2u

∂x3
h2 + o(h3)

)
+λuji

=
∂u

∂τ
+

1

2

∂2u

∂τ 2
k − (vji )

2

2

∂2u

∂x2
− βji

(
∂u

∂x
+

1

2

∂2u

∂x2
h+

1

6

∂2u

∂x3
h2

)
+λuji + o(k2)− σ2

2
o(h2)− βji o(h3).

Then
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Dk,hu−Du =
1

2

∂2u

∂τ 2
k − βji

(
1

2

∂2u

∂x2
h+

1

6

∂2u

∂x3
h2

)
+ o(k2)− (vji )

2

2
o(h2)− βo(h3).

We see then that as the time and space step approaches zero the difference operator
approaches the differential operator as long as u ∈ C4([0, T ]× R)

(k, h)→ 0⇒ |Dk,hu−Du| → 0. (4.142)

As for the integral part we get

∣∣∣∣∣
Kr∑
k=Kl

uji+kνk −
∫ Br

Bl

u(τ, x+ ξ(z, x))ν( dz)

∣∣∣∣∣
=

∣∣∣∣∣
Kr∑
k=Kl

uji+kνk −
Kr∑
k=Kl

∫ (k+∆x)0.5

(k−∆x)0.5

u(τ, x+ ξ(z, x))ν( dz)

∣∣∣∣∣
=

∣∣∣∣∣
Kr∑
k=Kl

(
uji+kνk −

∫ (k+∆x)0.5

(k−∆x)0.5

u(τ, x+ ξ(z, x))ν( dz)

)∣∣∣∣∣
=

∣∣∣∣∣
Kr∑
k=Kl

(∫ (k+∆x)0.5

(k−∆x)0.5

uji+k − u(τ, x+ ξ(z, x))ν( dz)

)∣∣∣∣∣
≤

Kr∑
k=Kl

(∫ (k+∆x)0.5

(k−∆x)0.5

∣∣uji+k − u(τ, x+ ξ(z, x))
∣∣ ν( dz)

)
.

But since in the numerical scheme we localize the problem in the interval (Al, Ar) we
must define

w(τ, x) = u(τ, x)1x∈(Al,Ar) + u(τ, x)1x/∈(Al,Ar) = u(τ, x)1x∈(Al,Ar) + g(τ, x)1x/∈(Al,Ar)(4.143)
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Then in fact we must have

|Jk,hu(τj, xi)− J u(τ, x)|

=

∣∣∣∣∣
Kr∑
k=Kl

(∫ (k+∆x)0.5

(k−∆x)0.5

u(τj, xi + ξ(zk, xi))− u(τ, x+ ξ(z, x))ν( dz)

)∣∣∣∣∣
=

∣∣∣∣∣
Kr∑
k=Kl

(∫ (k+∆x)0.5

(k−∆x)0.5

(u(τj, xi + ξ(zk, xi))− u(τ, x+ ξ(z, x))) 1x∈(Al,Ar)

+ (g(τj, xi + ξ(zk, xi))− g(τ, x+ ξ(z, x))) 1x/∈(Al,Ar)ν( dz)
)∣∣

≤
Kr∑
k=Kl

∣∣∣∣∣
∫ (k+∆x)0.5

(k−∆x)0.5

w(τj, xi + ξ(zk, xi))− w(τ, x+ ξ(z, x))ν( dz)

∣∣∣∣∣
≤

Kr∑
k=Kl

∣∣∣∣∣
∫ (k+∆x)0.5

(k−∆x)0.5

Cτk + Cxhν( dz)

∣∣∣∣∣
≤

Kr∑
k=Kl

Cτk + Cxh

∫ (k+∆x)0.5

(k−∆x)0.5

ν( dz)

=
Kr∑
k=Kl

(Cτk
∗ + Cxh) νk = (Cτk

∗ + Cxh)λ.

When (k∗, h)→ 0, by making the following Taylor expansion

w(τj, xi + ξ(zk, xi))− w(τ, x+ ξ(z, x))=
∂w

∂τ
(τ − τj) +

∂w

∂x
(x− xi)

+
∂w

∂x
(ξ(zk, xi)− ξ(z, x)) + o(‖h, k‖),(4.144)

we see that

|w(τj, xi + ξ(zk, xi))− w(τ, x+ ξ(z, x))|≤
∣∣∣∣∂w∂τ

∣∣∣∣ |(τ − τj)|+ ∣∣∣∣∂w∂x
∣∣∣∣ |(x− xi)|

+

∣∣∣∣∂w∂x
∣∣∣∣ ∣∣∣∣ln(1 + ρ(ψ(τj, xi + zk)− ψ(τj, xi))

1 + ρ(ψ(τ, x+ z)− ψ(τ, x))

)∣∣∣∣
≤ Cτk

∗ + (Cx + C∗)h, (4.145)

where

k∗ = τ − τj, h = x− xi, Cτ = sup
s∈(τj ,τ)

∂w

∂τ
(τ, x+ ξ(z, x)), (4.146)

Cx = sup
x∈(xi+ξ(zk,xi),x+ξ(z,x))

∣∣∣∣∂w∂x
∣∣∣∣ , (4.147)
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ln

(
1 + ρ(ψ(τj, xi + zk)− ψ(τj, xi))

1 + ρ(ψ(τ, x+ z)− ψ(τ, x))

)
(4.148)

≈ ρ(ψ(τj, xi + zk)− ψ(τ, x) + ψ(τ, x+ z)− ψ(τj, xi))

1 + ρ(ψ(τ, x+ z)− ψ(τ, x))
(4.149)

≤ ρ(ψ(τj, xi + zk)− ψ(τ, x) + ψ(τ, x+ z)− ψ(τj, xi))

≤ ρ (τj − τ)

∣∣∣∣∂ψ∂τ
∣∣∣∣+ ρ

∣∣∣∣∂ψ∂x
∣∣∣∣ (xi + zk − x) + ρ (τj − τ)

∣∣∣∣∂ψ∂τ
∣∣∣∣+ ρ (x+ z − xi)

∣∣∣∣∂ψ∂x
∣∣∣∣

≤ ρk∗
(
c1
τ + c2

τ

)
+ ρ

∣∣h1
∣∣ c1
x + ρ

∣∣h2
∣∣ c2
x = C∗, (4.150)

where

k∗ = τ − τj, h1 = xi + zk − x, h2 = x+ z − xi, c1
τ = sup

s∈(τj ,τ)

∂ψ

∂τ
(τ, x), c2

τ = sup
s∈(τj ,τ)

∂ψ

∂τ
(τ, xi),

c1
x = sup

x∈(x,xi+zk)

∣∣∣∣∂ψ∂x
∣∣∣∣ , c2

x = sup
x∈(xi,x+z)

∣∣∣∣∂ψ∂x
∣∣∣∣ . (4.151)

But we can do this as long as w(τ, x) does not contain discontinuity points in the interval
((k −∆x) 0.5, (k + ∆x) 0.5) and if Al or Ar does not belong to this interval. In those
cases we can proceed similarly∣∣∣∣∣

∫ (k+∆x)0.5

(k−∆x)0.5

w(τj, xi + ξ(zk, xi))− w(τ, x+ ξ(z, x))ν( dz)

∣∣∣∣∣ (4.152)

≤
∫ (k+∆x)0.5

(k−∆x)0.5

|w(τj, xi + ξ(zk, xi))− w(τ, x+ ξ(z, x))| ν( dz)

≤
∫ (k+∆x)0.5

(k−∆x)0.5

|w(τj, xi + ξ(zk, xi))|+ |w(τ, x+ ξ(z, x))| ν( dz)

≤ |w(τj, xi + ξ(zk, xi))|
∫ (k+∆x)0.5

(k−∆x)0.5

ν( dz)

+

∫ (k+∆x)0.5

(k−∆x)0.5

sup
z∈((k−∆x)0.5,(k+∆x)0.5)

|w(τ, x+ ξ(z, x))| ν( dz)

=

(
|w(τj, xi + ξ(zk, xi))|+ sup

z∈((k−∆x)0.5,(k+∆x)0.5)

|w(τ, x+ ξ(z, x))|

)
νk

≤ C(τ, x)νk.

So we see that if ν has not a singularity at zero when ∆x→ 0, then

νk =

∫ (k+∆x)0.5

(k−∆x)0.5

ν( dz) ≈ ∆x

2
(ν ((k −∆x) 0.5) + ν ((k + ∆x) 0.5))→ 0. (4.153)

Then summing up these terms we get as (h, k)→ 0

|Jk,hu(τj, xi)− J u(τ, x)|≤ λ (Cτk
∗ + (Cx + C∗)h) + C(τ, Ar)νKr + C(τ, Al)νKl → 0.
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4.4.3 Stability and Monotony

Definition 4.4.1 The scheme proposed in the previous section is stable if for every h
and g bounded it has a unique bounded solution independent of the time and space step
uniformly over [0, T ]× R :

∃C > 0,∀∆t,∆x > 0, i ∈ Z, j ∈ {0, 1, 2..,M} : |uji | ≤ C.

Definition 4.4.2 The scheme proposed is monotone if for every uj and vj are two solu-
tions of the scheme with initial conditions h and h∗ and conditions on the borders g and
g∗ respectively and if

h > h∗, g > g∗

we have
∀j ≥ 1, uj ≥ vj.

Next proposition shows that the scheme proposed is stable and monotone.

Proposition 4.4.3 The scheme (4.42) is stable and monotone.

Proof.
If we define

α1 = − 1

(∆x)2

(
1

2

σ2

(1− ρDψni )2

)
− 1

∆x

(
r − 1

2

σ2

(1− ρDψni )2 − α
)
,

α2 = 1 + 2
1

(∆x)2

(
1

2

σ2

(1− ρDψni )2

)
+

1

∆x

(
r − 1

2

σ2

(1− ρDψni )2 − α
)

+ λ,

α3 = − 1

(∆x)2

(
1

2

σ2

(1− ρDψni )2

)
,

we can write scheme (4.42) i.e

un+1
i − uni

∆t
= (D∆u

n+1)i + (J∆u
n)i

for i ∈ {0, 1..., N} , in the following way

−α3∆tun+1
i−1 + (1 + α1∆t)un+1

i − α2∆tun+1
i+1 = uni + ∆t

Kr∑
k=Kl

u(τj, xi + ξ(zk, xi))νk1|zk|>ε.

This set of equations defines a tridiagonal system of equations which has diagonal
strictly dominant, which ensures the uniqueness of the system. To see this notice that
α1 = α2 + α3 + λ, which implies

(1 + α1∆t) = 1 + (α2 + α3) ∆t+ λ∆t > (α2 + α3) ∆t.
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We can show by recurrence, that if C = max {||g||, ||h||} ≤ ∞ then for any n > 0 we
have ||un|| ≤ C.

Let it hold for n. We have some j ∈ {0, 1, 2, ..., N − 1} such that ||un+1||∞ = |un+1
j |

and ∀i 6= j |un+1
i | ≤ |un+1

j |.
Then

||un+1||∞ = |un+1
j |= |un+1

j | (1 + (α1 − α2 − α3 − λ) ∆t)

≤ −α3∆t|un+1
j−1 |+ (1 + α1∆t) |un+1

j | − α2∆t|un+1
j+1 | − λ∆t|un+1

j |
≤ | − α3∆tun+1

j−1 + (1 + α1∆t)un+1
j − α2∆tun+1

j+1 | − λ∆t|un+1
j |

= |unj + ∆t
Kr∑
k=Kl

u(τj, xi + ξ(zk, xi))νk1|zk|>ε| − λ∆t|un+1
k |

≤ (1 + λ∆t|) ||un||∞ − λ∆t|un+1
k | ≤ C.

Now to prove monotony consider two solutions un and vn with respectively border con-
ditions

h(x) ≥ h∗(x),∀x ∈ (Al, Ar), g(τ, x) ≥ g∗(τ, x), ∀(τ, x) ∈ [0, T ]× (Al, Ar)
c.

For n = 0 we have by construction u0 ≥ v0. Let un ≥ vn for n > 0. Since for any i /∈
{1, 2, .., N} , g(τn+1, xn+1) ≥ g∗(τn+1, xn+1) we have for i ∈ {1, 2, .., N} and yni = uni − vni

inf
i
yn+1
i = yn+1

j = yn+1
j (1 + (α1 − α2 − α3 − λ) ∆t)

≥ −α3∆tyn+1
j−1 + (1 + α1∆t) yn+1

j − α2∆tyn+1
j+1 − λ∆tyn+1

j

= ynj + ∆t
Kr∑
k=Kl

y(τj, xi + ξ(zk, xi))νk1|zk|>ε − λ∆tyn+1
j

≥ ynj + ∆tynj

Kr∑
k=Kl

νj1|yk|>ε − λ∆tyn+1
j

= ynj + ∆tynj λ− λ∆tyn+1
j ≥ 0.

Then we conclude that yni = uni − vni ≥ 0.

4.4.4 Convergence of the Classical PIDE

Using the same notation as in [83] we rewrite our scheme in the following way

B(∆t,∆x, n+ 1, i, un+1
i , ũ) = −α3∆tun+1

i−1 + (1 + α1∆t)un+1
i − α2∆tun+1

i+1

−uni −∆t
∑

0≤i+j≤N−1

νju
n
i+j1|yj |>ε −∆t

∑
0≤i+j≤N−1

νjg(τn, xi+j)1|yj |>ε (4.154)

where
ũ =

(
un+1
i+1 , u

n+1
i−1 , u

n
)

.
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We have the following monotony property assuming

un+1
i+1 = vn+1

i+1 , u
n ≤ vn

B(∆t,∆x, n+ 1, i, un+1
i , ũ) ≥ B(∆t,∆x, n+ 1, i, vn+1

i , ṽ) (4.155)

We have using the consistency of the scheme the following property: for any φ ∈
C∞([0, T ]×(Al, Ar)) and (τ, x) ∈ [0, T ]×(Al, Ar) when (∆t, x)→ (0, 0), (τn+1, xi)→ (τ, x)

1

∆t
B(∆t,∆x, n+ 1, i, un+1

i , ũ)→ ∂φ

∂τ
(τ, x)− Lφ(τ, x) (4.156)

For i = 1, .., N − 1 and s a constant function on the grid we have

B(∆t,∆x, n+ 1, i, un+1
i + s, ũ+ s) = B(∆t,∆x, n+ 1, i, un+1

i , ũ)

−
∑

0≤i+j≤N−1

sνj1|yj |>ε (4.157)

We define also a constant intepolation over the grid

u(∆t,∆x)(τ, x) = unj , τ ∈ [τn, τn+1), x ∈ [xj− 1
2
, xj+ 1

2
). (4.158)

and also

u(τ, x) = lim
(∆t,∆x)→0

inf
(t,y)→(τ,x)

u(∆t,∆x)(t, y) (4.159)

u(τ, x) = lim
(∆t,∆x)→0

sup
(t,y)→(τ,x)

u(∆t,∆x)(t, y) (4.160)

We will need the following two lemmas

Lemma 4.4.3 The function u is upper semi-continuous i.e

lim
(t,y)→(τ,x)

supu(t, y) ≤ u(τ, x) (4.161)

Proof. We have to show that for ∀ε > 0, ∃ (t, y) ∈ V (τ, x) such that ∀(t, y) ∈
V (τ, x), u(t, y) < u(t, x) + ε. We have by definition

u(t, y) = lim
(∆t,∆x)→0

sup
(r,w)→(t,y)

u(∆t,∆x)(r, w) (4.162)

Then over any neighbourhood of (tk, yk) we can find (∆tk,∆xk, rk, wk)→ (0, 0, τ, x)

u(tk, yk) ≤ u(∆tk,∆xk)(rk, wk) +
1

k
(4.163)

Then

lim
k→∞

supu(∆tk,∆xk)(rk, wk) ≤ lim
(∆t,∆x)→0

sup
(r,w)→(τ,x)

u(∆t,∆x)(r, w) (4.164)

which implies

u(t, y) ≤ lim
(∆t,∆x)→0

sup
(r,w)→(τ,x)

u(∆t,∆x)(r, w) + ε = u(t, x) + ε (4.165)

This way u ∈ USC and the proof is complete.
We also need the following lemma presented in [83]
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Lemma 4.4.4 There are sequences (∆tk,∆xk)→ 0 and nk, ik such that when k →∞

(τnk , xik)→ (τ, x) (4.166)

u(∆tk,∆xk)(τnk , xik)→ u(t, x) (4.167)

and for every k

max
(τn,xj)∈[0,T ]×Ω

{
u(∆tk,∆xk)(τn, xj)− φ(τn, xj)

}
=
(
u(∆tk,∆xk) − φ

)
(τnk , xik) (4.168)

We have then the following theorem of convergence of the finite difference scheme
which makes use of the concept of viscosity solutions.

Theorem 4.4.5 Let h(x), g(τ, x) be Lipschitz bounded functions such that g(0, Ar) =
h(Ar), g(0, Al) = h(Al). Suppose that the localized problem verifies the comparison prin-
ciple for semi-continuous viscosity solutions. If ν has a singularity we impose a restriction
on the choice of test functions φ = g apart from (Al, Ar). Then the solution u(∆t,∆x)(τ, x)
of the scheme converges uniformly over any compact of [0, T ]×R to the unique viscosity
solution of the localized problem.

Proof. We have to show that u is a subsolution and u is a supersolution since by
construction u ≤ u and by comparison principle for viscosity solutions u ≤ u.

Note that u is uniformly bounded, since by the proposition of stability and monotony
for every ∆t > 0,∆x > 0 ∀(τ, x) ∈ [0, T ]×R,we have |u(∆t,∆x)(τ, x)| ≤ max {||h||∞, ||g||∞},
which implies u ≤ C. Also by lemma 4.4.3 we know that u ∈ USC, then u ∈ USC ∩
C+
p ([0, T ] × R). So it remains to check the conditions in the definition of a viscosity

subsolution. If x /∈ [Al, Ar] then u(τ, x) = g(τ, x) since then by construction ∃ε > 0 such
that for ∆t < ε,∆x < ε, | (τn, xi − (τ, x)) | < ε we have u(∆t,∆x)(τn, xi) = g(τn, xi) and by
the definition of upper limit.

Let us choose a sequence as in lemma 4.4.4 and define ρk = u(∆tk,∆xk)(τnk , xik) −
φ(τnk , xik), φ

n
i = φ(τn, xi), (u

∆k)ni ≡ u(∆tk,∆xk)(τnk , xik). By construction

u(∆tk,∆xk)(τnk , xik) = φnkik + ρk, (4.169)

u(∆tk,∆xk)(τnk , xik+j) ≤ φnkik+j + ρk, n = 0, 1, 2, ..,M, j = Kl, .., Kr, (4.170)

ρk → 0. (4.171)

Then using (4.155), (4.157), (4.169) and (4.169) we have

0 =
1

∆tk
B(∆tk,∆xk, nk, ik, u

(∆tk,∆xk)(τnk , xik), ũ
∆k)

=
1

∆tk
B(∆tk,∆xk, nk, ik, φ

nk
ik

+ ρk, ũ
∆k)

≥ 1

∆tk
B(∆tk,∆xk, nk, ik, φ

nk
ik

+ ρk, φ̃
∆k + ρk)

=
1

∆tk
B(∆tk,∆xk, nk, ik, φ

nk
ik
, φ̃∆k)−

∑
0≤ik+j≤N−1

ρkνj1|yj |>ε →
(
∂φ

∂τ
− Lφ

)
(τ, x)
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because the scheme is consistent and the sum term is uniformly bounded since

|
∑

0≤ik+j≤N−1

sνj1|yj |>ε| ≤ λ|u(∆tk,∆xk)(τnk , xik)− φ
nk
ik
| ≤ λ

(
K + ||φ||[0,T ]×[Al,Ar]

)
Then for u ≤ φ over [0, T ]× R \ (τ, x) we have proven(

∂φ

∂τ
− Lφ

)
(τ, x) ≤ 0 (4.172)

Now for the case τ = 0 we consider a sequence (τnk , xik)→ (τ, x) such that (τnk , xik) ∈
[0, T ]× [Al, Ar], in which case we obtain the same conclusion as before, i.e(

∂φ

∂τ
− Lφ

)
(τ, x) ≤ 0 (4.173)

If ∃k∗ : k > k∗, τnk = 0, xik ∈ (Al, Ar), then we have (u∆k)nkik = h(xik) and passing to
the limit we obtain u(τ, x) = h(x).

If ∃k∗ : k > k∗, xik = Al ∪ xik = Ar, then we have (u∆k)nkik = g(τnk , xik) which implies
u(τ, x) = g(0, x) = h(x).

If τ 6= 0∩ xik = Al ∪ xik = Ar, then we have
(
∂φ
∂τ
− Lφ

)
(τ, x) ≤ 0 or u(τ, x) = g(τ, x).

This way we have proven

min

{(
∂φ

∂τ
− Lφ

)
(τ, x), u(τ, x)− h(x)

}
≤ 0, τ = 0 ∩ x ∈ [Al, Ar], (4.174)

min

{(
∂φ

∂τ
− Lφ

)
(τ, x), u(τ, x)− g(τ, x)

}
≤ 0, τ 6= 0 ∩ x = Al ∪ x = Ar. (4.175)

Then we have shown that u(τ, x) is a viscosity sub-solution and proceeding in the same
way we can prove that u(τ, x) is a viscosity super-solution.

It remains to show that the convergence is uniform over every compact interval [0, T ]×
R. In order to show it we use Dini’s theorem which states that if we have vn : X → R
,vn ∈ USC and for any x ∈ X vn(x) → 0 and decreasing in n, then vn → 0 uniformly
over any compact on R.

Therefore if we let X = [0, T ]× R and if we define

vn(τ, x) = sup
||(∆t,∆x)||≤ 1

n

||(r,w)−(τ,x)||≤ 1
n

u(∆t,∆x)(r, w), (4.176)

we see that both u(τ, x) and vn(τ, x) are decreasing and is upper semi-continuous. So we
can use Dini’s theorem to conclude that vn(τ, x) = vn(τ, x)− u(τ, x)→ 0 uniformly over
every compact of X, which then leads to

lim
(∆t,∆x)→0

(r,w)→(τ,x)

u(∆t,∆x)(r, w) = u(τ, x), (4.177)

uniformly over every compact of [0, T ]× R.
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Corollary 4.4.1 For every τ > 0, x ∈ R and for the case of an European option and if
h(x) is discontinuous except for a finite number of points, then the solution of the scheme
converges to the solution of (

∂u

∂τ
− Lu

)
(τ, x) = 0.

Proof. Let h, h ∈ C∞ (R) such that h ≤ h ≤ h. Also define

uh(τ, x) = EQ[h(x+ Yτ )], uh(τ, x) = EQ[h(x+ Yτ )] (4.178)

and the solutions of the scheme proposed using initial conditions h, h respectively by

u
(∆t,∆x)
h (t, y), u

(∆t,∆x)

h
(t, y). We have by monotony that u

(∆t,∆x)
h (t, y) ≤ u(∆t,∆x)(t, y) ≤

u
(∆t,∆x)

h
(t, y). The consequence is that u(∆t,∆x)(t, y) → u∗(τ, x) because u

(∆t,∆x)
h (t, y) →

uh(τ, x) and u
(∆t,∆x)

h
(t, y)→ uh(τ, x).

Let us then prove that u∗(τ, x) = u(τ, x). For that consider a1, a2, ..., an the disconti-
nuity points of h and suppose the jumps are bounded by a constant C. Then for a given
ε > 0, we have

|h(τ, x)− h(τ, x)| ≤ ε,∀x /∈ ∪ni=1 (ai − ε, ai + ε) , (4.179)

|h(τ, x)− h(τ, x)| ≤ C, ∀x ∈ ∪ni=1 (ai − ε, ai + ε) . (4.180)

Then

|uh(τ, x)− uh(τ, x)| = |EQ (h(x+ Yτ ))− EQ (h(x+ Yτ )
)
|

= |EQ ((h(x+ Yτ )− h(x+ Yτ )
) (

1x+Yτ∈∪ni=1(ai−ε,ai+ε) + 1x+Yτ /∈∪ni=1(ai−ε,ai+ε)
))
|

≤ εQ (x+ Yτ ∈ ∪ni=1 (ai − ε, ai + ε)) +KQ (x+ Yτ /∈ ∪ni=1 (ai − ε, ai + ε))

≤ ε+KQ (x+ Yτ ∈ ∪ni=1 (ai − ε, ai + ε)) .

Now if we define Aε = {x+ Yτ ∈ ∪ni=1 (ai − ε, ai + ε)}, then

lim
ε→0

Q (Aε) = Q (∩εAε) = Q (x+ Yτ ∈ {a1, a2, .., an}) = 0, (4.181)

because Yt has an absolutely continuous distribution and σ > 0.
The consequence is that |uh(τ, x)−uh(τ, x)| ≤ ε and since uh(τ, x) ≤ u(τ, x) ≤ uh(τ, x)

and uh(τ, x) ≤ u∗(τ, x) ≤ uh(τ, x), we can conclude that u∗(τ, x) = u(τ, x).



Chapter 5

Interest Rate Derivatives under the
Martingale Approach

Convexity adjustment is used by practitioners to value non standard products by using
plain vanilla products. The real world interbank market is not populated completely
by riskless banks. However, market operators assumed that the risk in the interbank
lending market was negligible when dealing with interest rate sensitive products to build
zero-coupon bonds curves. After August 2007, the Libor rate L(t, T ) was no longer
considered a good approximation to the truly default-free interest rate. Therefore we
define a convexity adjustment to value a contract called the Forward Rate Agreement.
First, we consider only an affine term structure (ATS) and then we combine an ATS with
a shot-noise process.

5.1 Introduction

To value nonstandard products in a fixed income market, practitioners usually use the
price of standard (plain vanilla) products corrected by an adjustment called the convex-
ity adjustment. This adjustment is made to plain vanilla products whose price can be
computed in closed form or obtained in the market, to correct the deviation introduced
in prices due to the complex nature of non-standard products. Another way to see this
is to think of convexity adjustment as a consequence of measure change since pricing
non-standard products is equivalent to compute prices under the wrong measure.

5.2 Problem Formulation

Let π denote the no arbitrage price, at time t, of a derivative paying Φ at time T . Then

πt(Φ) = EQ
t

[
Φ(T )e−

∫ T
t rs ds

]
= p(t, T )ETt [Φ(T )] , (5.1)

where p(t, T ) represents the price of a zero coupon bond, at time t, with maturity T . EQ
t [.]

and ETt [.] denotes the conditional expectation, given the information available at time t
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under the risk neutral measure and the T-forward measure respectively. We denote Bt,
the price process of a risk-free asset, at time t.

We are interested in computing the expected value of our payoff Φ(T ) under the
T-forward measure, i.e ETt [Φ(T )], where the numeraire is p(t, T ). However, we have
situations in which our payoff is not a martingale under the T -forward measure. If the
payoff Φt is a martingale under some QU martingale measure then Φt = EQU

t [ΦT ] and the
convexity adjustment can be defined as

ETt [ΦT ] = EQU
t [ΦT ] + CCU(t). (5.2)

We study only the convexity adjustment for the Forward Rate Agreement contract which
is defined in the following way

Definition 5.2.1 The Forward Rate Agreement contract is a contract entered at time
t, between two entities where the buyer of the contract at time T, obtains the amount
Φ(r(T )). At time T the buyer pays the amount Frat which is determined at time t. The
forward price for a T-claim contracted at time t is defined as the value Frat which gives
the contract the value of zero at time t.

We consider that the payoff is known and is computed in the following way: the
interests due to the difference between the par FRA rate and the Libor rate, L(S, T ),
accrued over the period [S, T ], discounted between times S and T using the Libor rate.
Notice that since the FRA is sold at par we have

0 = EQ
t

[
Bt

BS

Frat(S, T )− L(S, T )

1 + (T − S)L(S, T )

]
. (5.3)

Thus, the price of a forward rate agreement is given by

Frat(S, T ) =
EQ
t

[
Bt
BS

L(S,T )
1+(T−S)L(S,T )

]
EQ
t

[
Bt
BS

1
1+(T−S)L(S,T )

] . (5.4)

5.2.1 Classical Approach

Before August 2007, market operators thought in terms of one single term structure of
riskless interest rates in the sense that credit and liquidity risk were considered negligible.
Then

p(t, T ) =
1

1 +R(t, T )αt,T
, (5.5)

where p(t, T ) is the zero-coupon bond price, R(t, T ) is the deposit interest rate and αt,T
is the year fraction between t and T . The real world interbank market is not populated
completely by riskless banks. However, market operators assumed that the risk in the
interbank lending market was negligible when dealing with interest rate sensitive products
to build zero-coupon bonds curves. This was justified by the perceived low level of risk for
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the large majority of banks and by the fact that most interest rate derivatives products
were indexed by Libor rates. 1

Thus the Libor rate L(t, T ) was considered a good approximation to the truly default-
free interest rate R(t, T ) in the sense that one could treat L(t, T ) as the riskless rate. This
way, under the single curve assumption, the price of a zero coupon bond at time S is
given by

p(S, T ) =
1

1 + (T − S)L(S, T )
. (5.6)

Notice that we are assuming that Libor rate is a good approximation for the interbank
deposit rate. Also we assume that the differences of deposit quotes due to credit lines or
volume can be neglected.

This assumption was widely used before the crisis but nowadays is no longer a market
practice.

Result 5.2.2 Under the single curve assumption the price of a forward rate agreement
contract is given by

Frat(S, T ) = ETt [L(S, T )] , (5.7)

where L(S, T ) is given as the solution of (5.6).

Proof.
By the definition of a forward rate agreement price (5.4) and (5.6) we have

Ft(S, T ) =

EQ
t

[
Bt
BS

L(S,T )

1+(T−S)L(S,T )

]
EQ
t

[
Bt
BS

1+(T−S)L(S,T )

] =
EQ
t

[
Bt
BS

1−p(S,T )
T−S

]
EQ
t

[
Bt
BS
p(S, T )

] .
Notice that by risk neutral valuation and Bayes theorem we have

EQ
t

[
Bt

BS

p(S, T )

]
= EQ

t

[
Bt

BS

EQ
S

[
BS

BT

]]
= EQ

t

[
EQ
S

[
Bt

BS

BS

BT

]]
= EQ

t

[
Bt

BT

]
= p(t, T ).

Then finally using the following change of measure

dQT

dQ
=
p(S, T )

BS

Bt

p(t, T )
,

1Libor is an average rate of the rates at which banks believe they can obtain unsecured funding.
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we have once again using the definition of (5.6)

Ft(S, T ) =
ETt
[
Bt
BS

1−p(S,T )
T−S

p(t,T )
Bt

BS
p(S,T )

]
p(t, T )

= ETt [L(S, T )] .

We see that in the single-curve assumption the price of a forward rate agreement
contract is equal to Ft(S, T ), i.e the forward rate, which is defined by

Ft(S, T ) =
1

T − S

(
p(t, S)

p(t, T )
− 1

)
, (5.8)

5.2.2 Multiple-Curve Approach

After August 2007, the liquidity crisis increased the difference between deposit rates and
overnight interest rates (OIS) for the same maturity. This led to a larger difference
between forward rates, implied by two deposits, and the quoted FRA rate or the forward
rates implied by OIS quotes. Then, what the market usually does is to segment market
rates with respect to their application period, thus constructing different zero-coupon
bonds for each possible rate length considered.

Then, in the multiple-curve framework the forward rate agreement price is given in
the following result.

Result 5.2.3 Under the multiple-curve framework the price of a forward rate agreement
is given by

Frat(S, T ) = Ft(S, T )(1 + γFra),

where

γFra =
CovTt (FS(S, T ), QS(S, T ))

Ft(S, T )Qt(S, T )
,

and

Ft(S, T ) = ETt [L(S, T )]

Qt(S, T ) = ETt
[

1

1 + (T − S)L(S, T )

BT

BS

]
.

To justify the current divergence between market rates that have the same rate length,
practitioners usually deal with those differences by segmenting market rates, labeling
them according to their maturity. Instead of constructing different zero-coupon curves,
one for each possible rate length considered, we try to model the counterparty risk.
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5.2.3 Modelling counterparty risk

The first consequence of the credit crunch is that we can no longer assume that bank
counterparties are riskless. Thus several credit models have been proposed in the liter-
ature to take into account the difference between the forward rate and the FRA rate,
which are based on assuming that the generic counterparty is subject to default risk.
Then the price of a defaultable bond at time t is

p̄(t, T ) = EQ
t

[
e−

∫ T
t r(s) ds1τ>T |τ > t

]
= EQ

t

[
e−

∫ T
t r(s)+λ(s) ds

]
,

where τ is the default time of the bond issuer.

Then since the Libor rate is the reference lending rate, we can define it in terms of
the risky bond p̄(t, T ) as

L(t, T ) =
1

T − t

(
1

p̄(t, T )
− 1

)
. (5.9)

Lemma 5.2.4 The price of a forward rate agreement taking into account counterparty
risk is given by

Frat(S, T ) = ET̄t [L(S, T )] , (5.10)

where the expectation is taken under the QT̄ measure, whose numeraire is p̄(t, T ).

Proof. By the definition of a forward rate agreement price (5.4) and (5.9), we have

Frat(S, T ) =

EQ
t

[
Bt
BS

L(S,T )

1+(T−S)L(S,T )

]
EQ
t

[
Bt
BS

1+(T−S)L(S,T )

] =
EQ
t

[
Bt
BS

1−p̄(S,T )
T−S

]
EQ
t

[
Bt
BS
p̄(S, T )

] . (5.11)

Notice that by risk neutral valuation and Bayes theorem we have

EQ
t

[
Bt

BS

p̄(S, T )

]
= EQ

t

[
Bt

BS

EQ
S

[
BS

BT

1τ>T |τ > t

]]
= EQ

t

[
EQ
S

[
Bt

BS

BS

BT

1τ>T |τ > t

]]
= EQ

t

[
EQ
S

[
Bt

BT

1τ>T |τ > t

]]
= p̄(t, T ).

Then finally using the following change of measure

dQT̄

dQ
=
p̄(S, T )

BS

Bt

p̄(t, T )
,
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the price of a forward rate agreement contract is given by

Frat(S, T ) =
ET̄t
[
p̄(t,T )
Bt

BS
p̄(S,T )

Bt
BS

1−p̄(S,T )
T−S

]
p̄(t, T )

= ET̄t
[

1

T − S

(
1

p̄(S, T )
− 1

)]
= ET̄t [L(S, T )] ,

where we have used once again (5.9).

This motivates us to consider the following definition.

Definition 5.2.5 The Forward Rate Agreement convexity adjustment is defined as

ETt [L(S, T )] = ET̄t [L(S, T )] + CCFra(t, S, T ). (5.12)

Note that if p(t, T ) = p̄(t, T ) then the convexity adjustment is zero, i.e CCFra(t, S, T ) = 0.

5.3 Affine Term Structure Models

5.3.1 Non-Defaultable bonds

We assume that the risk-free interest rate r is linear on given factors described by a Rm

valued process (Zt)t≥0.

Assumption 5.3.1 Assume a Rm valued process (Zt)t≥0 whose dynamics are given by

dZt = α(t, Zt) dt+ σ(t, Zt) dWQ
t , (5.13)

where Wt is a n-dimensional standard Brownian motion, α : R+ × Rm → Rm and σ :
R+ × Rm → Rm×n such that

α(t, z) = d(t) + E(t)z, (5.14)

σ(t, z)σT (t, z) = k0(t) +
m∑
i=1

ki(t)zi, (5.15)

with smooth functions d : R+ → Rm, E : R+ → Rm×m, k0 : R+ → Rn×n, ki : R+ →
Rn×n, i = 1, 2...,m map R+ to Rn×n. Also, the risk-free short rate (rt)t≥0 is given by

r(t, Zt) = gT (t)Zt + f(t), (5.16)

where g : R+ → Rm and f : R+ → R are smooth functions.

In this setup the risk-free bond price is given in the following result and can be found
in [41].
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Result 5.3.2 Let Assumption 5.3.1 holds. Then the price of a non-defaultable zero
coupon bond is given by

p(t, T ) = eA(t,T )+BT (t,T )Zt , (5.17)

where A and B are deterministic functions of (t, T ) that solve the ODE system,{
∂A
∂t

+ dT (t)B + 1
2
BTk0(t)B = f(t),

A(T, T ) = 0
(5.18){

∂B
∂t

+ ET (t)B + 1
2
B
T
K(t)B = g(t)

B(T, T ) = 0,
(5.19)

where

B =


B 0 · · · 0
0 B · · · 0
...

...
. . .

...
0 0 · · · B

, K(t) =


k1(t)
k2(t)

...
km(t)

 , (5.20)

and E,d,k0 are the same as in (5.14)-(5.15), while f and g are as in (5.16). A and B are
evaluated at (t, T ).

Proof. Let G(t, Zt) = E[e−
∫ T
t gT (s)Zs+f(s) ds] = eA(t,T )+B(t,T )Zt .

If we apply Ito’s formula to Yt = G(t, Zt)e
−
∫ t
0 g

T (s)Zs+f(s) ds, we get

d(G(t, Zt)e
−
∫ t
0 g

T (s)Zs+f(s) ds) = e−
∫ t
0 g

T (s)Zs+f(s) ds

(
∂G

∂t
−
(
gT (t)Zt + f(t)

)
G(t, Zt)

)
dt

+
∂G

∂z
e−

∫ t
0 g

T (s)Zs+f(s) ds dZ +
1

2

∂2G

∂z2
e−

∫ t
0 g

T (s)Zs+f(s) ds( dZ)2.

Plugging in the dynamics of Z given by (5.13), we obtain

d(Yt) = e−
∫ t
0 g

T (s)Zs+f(s) ds

(
∂G

∂t
−
(
gT (t)Zt + f(t)

)
G(t, Zt) (5.21)

+
∂G

∂z
α(t, Zt) +

1

2
tr

(
σT (t, Zt)

∂2G

∂z2
σ(t, Zt)

))
dt

+
∂G

∂z
e−

∫ t
0 g

T (s)Zs+f(s) dsσ(t, Zt) dWt.

Since G(t, Zt)e
−
∫ t
0 g

T (s)Zs+f(s) ds is a martingale by construction, we have

∂G

∂t
−
(
gT (t)z + f(t)

)
G(t, Zt) +

∂G

∂z
α(t, Zt) +

1

2
tr

(
σT (t, Zt)

∂2G

∂z2
σ(t, Zt)

)
= 0

G(T, ZT ) = 1. (5.22)
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Due to Assumption 5.3.1 and assuming G(t, Zt) = eA(t,T )+BT (t,T )Zt , we compute

∂G

∂t
=
∂A

∂t
G(t, Zt) +

∂B

∂t
ZtG(t, Zt), (5.23)

∂G

∂z
= BT (t, T )G(t, Zt), (5.24)

∂2G

∂z2
= B(t, T )BT (t, T )G(t, Zt), (5.25)

to plug in (5.22) and using the definition of α and σ given by (5.14) and (5.15) respectively,
we obtain

∂A

∂t
G(t, Zt) +

∂B

∂t
zG(t, Zt)−

(
gT (t)z + f(t)

)
G(t, Zt) +BT (t, T )G(t, Zt) (d(t) + E(t)z)

+
1

2
tr

(
B(t, T )BT (t, T )

(
k0(t) +

m∑
i=1

ki(t)zi

))
G(t, Zt) = 0. (5.26)

After some reshuffling we get

∂A

∂t
+
∂B

∂t
z −

(
gT (t)Zt + f(t)

)
+BT (t, T ) (d(t) + E(t)z) (5.27)

+
1

2
tr
(
BT (t, T )k0(t)B(t, T )

)
+

1

2
BTK(t)Bz = 0. (5.28)

Since G(T, ZT ) = 1 we must have A(T, T ) = 0 and B(T, T ) = 0 and because this has
to hold for every z, we end up with the desired system of equations as stated.

5.3.2 Defaultable bonds

5.3.2.1 Convexity Adjustment without the shot-noise process

Next we assume that the default intensity is also linear on given factors.

Assumption 5.3.3 Assume Zt is a Rm valued process. The intensity process λt is given
by

λ(t) = gTλ (t)Zt + fλ(t). (5.29)

Note that there is no loss of generality in assuming the same factors Zt as in the risk-free
process.

Next we want to be able to compute

p̄(t, T ) = EQ
t

[
e−

∫ T
t r(s)+λ(s) ds

]
.

Next proposition gives us the price of a defaultable zero coupon bond.
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Proposition 5.3.1 Let Assumption 5.3.3 hold. Then the price of a defaultable zero
coupon bond is given by

p̄(t, T ) = eĀ(t,T )+B̄T (t,T )Zt , (5.30)

where Ā(t, T ) and B̄(t, T ) are deterministic functions of (t, T ) that solve the ODE system,

{
∂Ā
∂t

+ dT (t)B̄(t, T ) + 1
2
B̄T (t, T )k0(t)B̄(t, T ) = f(t) + fλ(t)

Ā(T, T ) = 0,
(5.31){

∂B̄
∂t

+ ET (t)B̄(t, T ) + 1
2
B̄
T
K(t)B̄ = g(t) + gλ(t)

B̄(T, T ) = 0,
(5.32)

where E,d,k0 are the same as in (5.14)-(5.15). B,K are as in (5.20) while gλ,fλ are given
in (5.29).

Proposition 5.3.2 Suppose Assumption 5.3.3 holds . Then the Convexity adjustment of
Definition 5.2.5 is obtained in closed-form and is given by

CCFra(t, S, T ) =
1

T − S
p̄(t, S)

p̄(t, T )

(
eF (t,S,T )+G(t,S,T )Zt − 1

)
, (5.33)

where F and G solve the deterministic system of ODE


∂F
∂t

+
(
B̄T (t, S)− B̄(t, T )T

)
k0(t)

(
B(t, T )− B̄(t, T )

)
+G(t, S, T )d(t) +Gk0(t)B(t, T ) + 1

2
Gk0(t)GT +G(t, S, T )k0(t)(B̄(t, T )− B̄(t, S)) = 0 ,

F (T, S, T ) = 0
∂G
∂t

+
(
I ⊗

(
B̄T (t, S)− B̄T (t, T )

))
K(t)

(
B(t, T )− B̄(t, T )

)
+GE(t) + G̃K(t)B(t, T )

+1
2
G̃K(t)GT + G̃K(t)(B̄(t, T )− B̄(t, S)) = 0 ,

G(T, S, T ) = 0

where

G̃ =


G 0 · · · 0
0 G · · · 0
...

...
. . .

...
0 0 · · · G

 (5.34)

and I denotes the identity matrix and E,d,k0 are the same as in (5.14)-(5.15), while B̄
is the solution of the ODE system (5.31)-(5.32), F and G are evaluated at (t, S, T ). Also
K(t) is given as in (5.20).

Proof. By definition, we have

ETt [L(S, T )] =
1

T − S
ETt
[

1

p̄(S, T )
− 1

]
⇔ 1 + (T − S)ETt [L(S, T )] = ETt

[
p̄(S, S)

p̄(S, T )

]
.
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If we define M(t, S, T ) = ETt
[
p̄(S,S)
p̄(S,T )

]
= p̄(t,S)

p̄(t,T )
eF (t,S,T )+G(t,S,T )Zt we know that M(t, S, T )

is a QT - martingale.
By Girsanov theorem with kernel given by v(t, T ) = BT (t, T )σ(t, T ) we have

dWQ
t = vT (t, T ) dt+ dWQT

t , (5.35)

which gives the dynamics of Zt under QT

dZt =
(
α(t, Zt) + σ(t, Zt)v

T (t, T )
)

dt+ σ(t, Zt) dW T
t . (5.36)

Now applying Ito’s formula to (5.30) we have under QT

dp̄(t, T ) =

(
∂Ā

∂t
+
∂B̄

∂t
z + B̄T (d(t) + E(t)z) + B̄Tσ(t, Zt)v

T (t, T )

+
1

2
B̄TσσT B̄

)
p̄(t, T ) dt+ p̄(t, T )B̄Tσ dW T

t ,

by plugging in the dynamics for Zt and taking into account (5.14) and (5.15).
Since A and B solve (5.31)-(5.32) we have

dp̄(t, T ) =
((
gT (t) + gTλ (t)

)
z + fλ(t) + f(t) + B̄Tσ(t, Zt)v

T (t, T )
)
p̄(t, T ) dt

+p̄(t, T )B̄Tσ dW T
t .

Now using the fact that the intensity process is given by (5.29) and short rate is given
by (5.16), we end up with the dynamics for the defaultable zero coupon bond under the
forward measure

dp̄(t, T ) =
(
rt + λt + B̄T (t, T )σ(t, Zt)v

T (t, T )
)
p̄(t, T ) dt+ p̄(t, T )B̄T (t, T )σ(t, T ) dW T

t .

Now similarly for the zero-coupon bond with maturity S, performing Girsanov theorem
with the same kernel v(t, T ) = BT (t, T )σ(t, T ), we get

dp̄(t, S) =
(
rt + λt + B̄T (t, S)σ(t, Zt)v

T (t, T )
)
p̄(t, T ) dt+ p̄(t, S)B̄T (t, S)σ(t, S) dW T

t

Define v̄(t, T ) = B̄T (t, T )σ(t, Zt). Applying Ito formula to Yt = p̄(t,S)
p̄(t,T )

we get

dYt = Ytṽ(t, S, T ) dt+ Yt (v̄(t, S)− v̄(t, T )) dW T
t ,

where
ṽ(t, S, T ) = (v̄(t, S)− v̄(t, T ))

(
vT (t, T )− v̄T (t, T )

)
.

Applying Ito formula to M(t, S, T ) = p̄(t,S)
p̄(t,T )

eF (t,S,T )+G(t,S,T )Zt we get

dM =
∂M

∂t
dt+

∂M

∂y

(
Ytṽ(t, S, T ) dt+ Yt (v̄(t, S)− v̄(t, T )) dW T

t

)
+
∂M

∂z

((
α(t, Zt) + σ(t, Zt)v(t, T )T

)
dt+ σ(t, Zt) dW T

t

)
+

1

2

n∑
i,j=1

∂2M

∂zi∂zj
σiσj dt+

∂2M

∂z∂y
(σ(t, Zt)) (Yt (v̄(t, S)− v̄(t, T ))) dt. (5.37)
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Since M(t, S, T ) is a QT -martingale then

∂M

∂t
+
∂M

∂y
Ytṽ(t, S, T ) +

∂M

∂z

(
α(t, Zt) + σ(t, Zt)v(t, T )T

)
+

1

2

n∑
i,j=1

∂2M

∂zi∂zj
σiσj + Yt

∂2M

∂z∂y
(σ(t, Zt))

(
v̄T (t, S)− v̄T (t, T )

)
= 0.

Noticing that

∂M

∂t
=

(
∂F

∂t
+
∂G

∂t
Z

)
M,

∂M

∂y
= eF (t,S,T )+G(t,S,T )Zt ,

∂M

∂z
= G(t, S, T )M,

∂2M

∂zi∂zj
= GiGjM,

∂2M

∂z∂y
= G(t, S, T )eF (t,S,T )+G(t,S,T )Zt ,

we end up with(
∂F

∂t
+
∂G

∂t
z

)
+ ṽ(t, S, T ) +

1

2
GσσTGT +G(t, S, T )

(
α(t, Zt) + σ(t, Zt)v(t, T )T

)
+G(t, S, T ) (σ(t, Zt))

(
v̄T (t, S)− v̄T (t, T )

)
= 0.

Taking into account the affine dynamics of Z, former PDE has the following form(
∂F

∂t
+
∂G

∂t
z

)
+ ṽ(t, S, T ) +G(t, S, T )

(
d(t) + E(t)z + (k0(t) +

m∑
i=1

ki(t)zi)B(t, T )

)

+
1

2
G

(
k0(t) +

m∑
i=1

ki(t)zi

)
GT +G(t, S, T )

(
k0(t) +

m∑
i=1

ki(t)zi

)
(B̄(t, T )− B̄(t, S)) = 0,

where now ṽ(t, S, T ) is given by

ṽ(t, S, T ) =
(
B̄(t, S)− B̄(t, T )

)(
k0(t) +

m∑
i=1

ki(t)zi

)(
BT (t, T )− B̄T (t, T )

)
.

Separating variables yields the following system of equations
∂F
∂t

+
(
B̄T (t, S)− B̄T (t, T )

)
k0(t)

(
B(t, T )− B̄(t, T )

)
+ 1

2
Gk0(t)GT

+G(t, S, T )d(t) +G(t, S, T )k0(t)B(t, T ) +G(t, S, T )k0(t)(B̄(t, T )− B̄(t, S)) = 0 ,
F (T, S, T ) = 0
∂G
∂t

+
(
B̄T (t, S)− B̄T (t, T )

)
(
∑m

i=1 ki(t)zi)
(
B(t, T )− B̄(t, T )

)
+G(t, S, T )E(t) +G(t, S, T )

∑m
i=1 ki(t)ziB(t, T )

+1
2
G
∑m

i=1 ki(t)ziG
T +G(t, S, T )

∑m
i=1 ki(t)zi(B̄(t, T )− B̄(t, S)) = 0 ,

G(T, S, T ) = 0.
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If we define G̃ by (5.34) then we get the claimed PDE’s. Moreover, since

1 + (T − S)ETt [L(S, T )] =
p̄(t, S)

p̄(t, T )
eF (t,S,T )+G(t,S,T )Zt ,

we can solve for ETt [L(S, T )] we get

ETt [L(S, T )] =
1

T − S

(
p̄(t, S)

p̄(t, T )
eF (t,S,T )+G(t,S,T )Zt − 1

)
.

Since

Frat(S, T ) = ET̄t [L(S, T )] = L(t, S, T ) =
1

T − S

(
p̄(t, S)

p̄(t, T )
− 1

)
,

we use the definition 5.2.5 and obtain the claimed Convexity adjustment.

Notice that when p̄(t, T ) = p(t, T ) then Ā(t, T ) = A(t, T ), B̄(t, T ) = B(t, T ), meaning
that G = 0 which implies F = 0. This way CCFra(t, S, T ) = 0.

Now we present an example when the short rate and the intensity default follow the
Vasicek model.

Example 5.3.4

drt = (a− brt) dt+ σ dW r
t , (5.38)

dλt = (aλ − bλλt) dt+ σλ dW λ
t . (5.39)

In this case m=2 and

Zt =

[
rt
λt

]
,g(t) =

[
1
0

]
,gλ(t) =

[
0
1

]
, d(t) =

[
a
aλ,

]
(5.40)

E(t) =

[
−b 0
0 −bλ

]
, k0 =

[
σ2 0
0 σ2

λ

]
, (5.41)

with f(t) = fλ(t) = 0,K = 0. Then the solution of the system of ODE’s (5.18) − (5.19)
becomes

B̄1(t, T ) =
1

b

(
e−b(T−t) − 1

)
, (5.42)

B̄2(t, T ) =
1

bλ

(
e−bλ(T−t) − 1

)
, (5.43)

Ā(t, T ) =
(
B̄1(t, T ) + T − t

)(a
b
− σ2

b2

)
− 1

4

σ2

b
B̄2

1(t, T ) +
(
B̄2(t, T ) + T − t

)(aλ
bλ
− σ2

λ

b2
λ

)
−1

4

σ2
λ

bλ
B̄2

2(t, T ). (5.44)

Then the convexity adjustment is given by

CCFra(t, S, T ) =
1

T − S
p̄(t, S)

p̄(t, T )

(
eF (t,S,T )+G(t,S,T )Zt − 1

)
, (5.45)
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Figure 5.1: The Convexity Adjustment under the Vasicek Model with a = 0.3, aλ =
0.4, b = 0.05, bλ = 0.1, σλ = 0.05, r = 0.05, λ = 0.2 when T = S + 0.5. Blue:
σ=0.15,Brown: σ=0.1,Red: σ=0.05.

where F and G solve the deterministic system of ODE

∂F
∂t

+
(
B̄1

T
(t, S)− B̄1

T
(t, T )

)
σ2
(
B1(t, T )− B̄1(t, T )

)
+
(
B̄2

T
(t, S)− B̄2

T
(t, T )

)
σ2
λ

(
B2(t, T )− B̄2(t, T )

)
+G1a+G2aλ +G1σ

2B1(t, T )

+G2σ
2
λB2(t, T ) + 1

2
G1σ

2G1 + 1
2
G2σ

2
λG2

+G1σ
2(B̄1(t, T )− B̄1(t, S)) +G2σ

2
λ(B̄2(t, T )− B̄2(t, S)) = 0,

F (T, S, T ) = 0
∂G1

∂t
− bG1 = 0,

∂G2

∂t
− bλG2 = 0,

G(T, S, T ) = 0.

But this way G1 = G2 = 0, which implies that F is given by the solution of the
following equation satisfying F (T, S, T ) = 0

∂F

∂t
+
(
B̄1

T
(t, S)− B̄1

T
(t, T )

)
σ2
(
B1(t, T )− B̄1(t, T )

)
(5.46)

+
(
B̄2

T
(t, S)− B̄2

T
(t, T )

)
σ2
λ

(
B2(t, T )− B̄2(t, T )

)
= 0.

In figure 5.1 we can observe the Convexity Adjustment when a = 0.3, aλ = 0.4, b =
0.05, bλ = 0.1, σ = 0.15, σλ = 0.05, r = 0.05, λ = 0.2 for several maturities.

Now we present an example when the short rate follows the CIR model and the
intensity default follows the Vasicek model.

Example 5.3.5

drt = (a− brt) dt+ σ
√
rt dW r

t , (5.47)

dλt = (aλ − bλλt) dt+ σλ dW λ
t . (5.48)
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In this case m=2 and

Zt =

[
rt
λt

]
,g(t) =

[
1
0

]
,gλ(t) =

[
0
1

]
, d(t) =

[
a
aλ

]
, (5.49)

E(t) =

[
−b 0
0 −bλ

]
, k0 =

[
0 0
0 σ2

λ

]
, k1 =

[
σ2 0
0 0

]
. (5.50)

with f(t) = fλ(t) = 0. Then the solution of the system of ODE’s (5.18)− (5.19) becomes

B̄1(t, T ) =
2γ1γ2

σ2

(
e−γ2(T−t) − e−γ1(T−t)

γ1e−γ2(T−t) − γ2e−γ1(T−t)

)
, (5.51)

B̄2(t, T ) =
1

bλ

(
e−bλ(T−t) − 1

)
, (5.52)

Ā(t, T ) = − a

σ2
log

(
e−γ2(T−t) − e−γ1(T−t)

γ1 − γ2

)
+
(
B̄2(t, T ) + T − t

)(aλ
bλ
− σ2

λ

b2
λ

)
−1

4

σ2
λ

bλ
B̄2

2(t, T ), (5.53)

where

γ1 =
b+
√
b2 + 2σ2

2
, γ2 =

b−
√
b2 + 2σ2

2
. (5.54)

Then the convexity adjustment is given by

CCFra(t, S, T ) =
1

T − S
p̄(t, S)

p̄(t, T )

(
eF (t,S,T )+G(t,S,T )Zt − 1

)
, (5.55)

where F and G solve the deterministic system of ODE


∂F
∂t

+
(
B̄2

T
(t, S)− B̄2

T
(t, T )

)
σ2
λ

(
B2(t, T )− B̄2(t, T )

)
+G1a+G2aλ +G1σ

2
λB2(t, T ) + 1

2
G2σ

2
λG2 +G2σ

2
λ(B̄2(t, T )− B̄2(t, S)) = 0,

F (T, S, T ) = 0,
∂G1

∂t
+
(
B̄1

T
(t, S)− B̄1

T
(t, T )

)
σ2
(
B1(t, T )− B̄1(t, T )

)
−bG1 +G1σ

2B̄1(t, T ) + 1
2
G2

1σ
2 +G1

(
B̄1(t, T )− B̄1(t, S)

)
σ2 = 0,

∂G2

∂t
− bλG2 = 0,

G(T, S, T ) = 0.

In figure (5.2) we can observe the Convexity Adjustment when a = 0.3, aλ = 0.4, b =
0.05, bλ = 0.1, σ = 0.15, σλ = 0.05, r = 0.05, λ = 0.2 for several maturities under the CIR
model.
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Figure 5.2: The Convexity Adjustment under the CIR model with a = 0.3, aλ = 0.4, b =
0.05, bλ = 0.1, σλ = 0.05, r = 0.05, λ = 0.2 when T = S + 0.5. Blue: σ=0.15,Red:
σ=0.1,Brown: σ=0.05.

5.3.2.2 Convexity Adjustment with the shot-noise process

Now we model the default intensity combining an affine term with a shot noise process.
We consider a reduced-form type of model that still keeps some tractability of classical
ATS setting and is able to model portfolio credit risk. With the shot-noise process we can
incorporate realistic features such as clustering of defaults within firms and correlation
of defaults across firms.

Assumption 5.3.6 Assume Zt is a Rm valued process. The intensity process µt is given
by

µt = gTλ (t)Zt + fλ(t) +
∑
τ̃i≤t

Yih(t− τ̃i), (5.56)

where τ̃1, τ̃2, .... are the jumping times of a Poisson process N with intensity ν. Yi, i =
1, 2, .. are i.i.d, independent of W and N . gTλ (t) : R+ → Rm, fλ(t) : R+ → R and
h : R+ → R are smooth functions. The default time τ is a doubly stochastic random time
with intensity (µt)t≥0.

Proposition 5.3.3 Let Assumption 5.3.6 hold. Then the price of a defaultable zero
coupon bond is given by

p̄(t, T ) = eĀ(t,T )+B̄T (t,T )ZtEQ
t

[
e−

∫ T
t

∑
τ̃i≤s

Yih(s−τ̃i) ds
]
, (5.57)

where Ā(t, T ) and B̄(t, T ) are deterministic functions of (t, T ) that solve the ODE system
(5.31)-(5.32)

and where

EQ
t

[
e−

∫ T
t

∑
τ̃i≤s

Yih(s−τ̃i) ds
]

= e−
∑
τ̃i≤t

Yi
∫ T−τ̃i
t−τ̃i

h(u) dueν(T−t)(D(T−t)−1),

D(T − t) =

∫ 1

0

EQ
[
e−Y

∫ (T−t)ξ
0 h(u) du

]
dξ. (5.58)
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Proof.
Observe that after change of variables u = s − τ̃i, t ≤ s ≤ T ⇒ t − τ̃i ≤ u ≤ T − τ̃i,

we have

e−
∫ T
t

∑
τ̃i≤t

Yih(s−τ̃i) ds = e−
∑
τ̃i≤t

Yi
∫ T−τ̃i
t−τ̃i

h(u) du,

which gives us

EQ
t

[
e−

∫ T
t

∑
τ̃i≤s

Yih(s−τ̃i) ds
]

= EQ
t

[
e−

∫ T
t

∑
τ̃i≤t

Yih(s−τ̃i)+
∑
τ̃i∈(t,s) Yih(s−τ̃i) ds

]
= e−

∫ T
t

∑
τ̃i≤t

Yih(s−τ̃i) dsEQ
t

[
e−

∫ T
t

∑
τ̃i∈(t,s) Yih(s−τ̃i) ds

]
= e−

∑
τ̃i≤t

Yi
∫ T−τ̃i
t−τ̃i

h(u) duEQ
t

[
e−

∫ T
t

∑
τ̃i∈(t,s) Yih(s−τ̃i) ds

]
.

The second term can be computed in the following way

EQ
t

[
e−

∫ T
t

∑
τ̃i∈(t,s) Yih(s−τ̃i) ds

]
= EQ

[
e−

∫ T
t

∑
τ̃i∈(t,T ) 1τ̃i≤sYih(s−τ̃i) ds

]
=
∞∑
k=0

e−ν(T−t) (ν(T − t))k

k!
EQ
[
e
−
∑k
i=1

∫ T
τ̃i
Yih(s−τ̃i) ds

]
=
∞∑
k=0

e−ν(T−t) (ν(T − t))k

k!
EQ
[
e−

∑k
i=1 Yi

∫ T−τ̃i
0 h(u) du

]
=
∞∑
k=0

e−ν(T−t) (ν(T − t))k

k!
EQ
[
e−

∑k
i=1 Yi

∫ (T−t)(1−ηi)
0 h(u) du

]
,

since u = s − τ̃i, τ̃i ≤ s ≤ T ⇒ 0 ≤ u ≤ T − τ̃i and because the distribution of jump
times conditional on the number of jumps follows the distribution of order statistics of
uniform i.i.d random variables denoted by ηi, i = 1, 2, .. over the interval.

EQ
[
e−

∑k
i=1 Yi

∫ (T−t)(1−ηi)
0 h(u) ds

]
=
(
EQ
[
e−Y

∫ (T−t)(1−η1)
0 h(u) du

])k
=

(∫ 1

0

EQ
[
e−Y

∫ (T−t)ξ
0 h(u) du

]
dξ

)k
= D(T − t)k,

since ξ = 1− ηi, 0 ≤ u ≤ (T − t)(1− ηi)⇒ 0 ≤ u ≤ (T − t)ξ. Therefore

EQ
t

[
e−

∫ T
t

∑
τ̃i∈(t,s) Yih(s−τ̃i) ds

]
= eν(T−t)(D(T−t)−1). (5.59)

Then

EQ
t

[
e−

∫ T
t

∑
τ̃i≤s

Yih(s−τ̃i) ds
]

= e−
∑
τ̃i≤t

Yi
∫ T−τ̃i
t−τ̃i

h(u) dueν(T−t)(D(T−t)−1).

Finally by risk neutral valuation we have

p̄(t, T ) = EQ
t

[
e−

∫ T
t r(s)+λ(s)+

∑
τ̃i≤s

Yih(s−τ̃i) ds
]

= EQ
t

[
e−

∫ T
t r(s)+λ(s) ds

]
EQ
t

[
e−

∫ T
t

∑
τ̃i≤s

Yih(s−τ̃i) ds
]
,
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and since we already computed the first term in Proposition (5.3.2) given by (5.30), we
get (5.57).

As proven in [43] the shot noise process is Markovian if and only if is of the form
h(t) = ae−bt. We will consider only the special case when a = 1 and b = 0.

Proposition 5.3.4 Suppose Assumption 5.3.6 holds for the case when there is a shot
noise Process. Then the Convexity adjustment of Definition 5.2.5 is obtained in closed-
form and is given by

CCFra(t, S, T ) =
1

T − S
p̄(t, S)

p̄(t, T )

(
eF (t,S,T )+G(t,S,T )Zt+

∫ t
0

∫
R K̃(s,y)N( ds,dy) − 1

)
, (5.60)

where F and G solve the deterministic system of ODE
∂F
∂t

+
(
B̄T (t, S)− B̄T (t, T )

)
k0(t)

(
B(t, T )− B̄(t, T )

)
+GTd(t) +GTk0(t)B(t, T )

+∂C̄
∂t

(t, S)− ∂C̄
∂t

(t, T ) + 1
2
GTk0(t)G+GTk0(t)(B̄(t, T )− B̄(t, S))

+
∫
R e

K̃(s,y) − 1ν( dy) = 0
F (T, S, T ) = 0,
∂G
∂t

+
(
I ⊗

(
B̄T (t, S)− B̄T (t, T )

))
K(t)

(
B(t, T )− B̄(t, T )

)
+GTE(t) + G̃TK(t)B

+1
2
G̃TK(t)G+ G̃TK(B̄(t, T )− B̄(t, S)) = 0,

G(t, S, T ) = 0,

where F and G should be evaluated at (t, S, T ), I is the identity matrix and G̃ is defined in

the same way as in (5.34). Also K(t) is given as in (5.20). Also K̃(u, y) = −
∫ T
u
yh(s−

τ̃i) ds.

Proof. By definition we have

ETt [L(S, T )] =
1

T − S
ETt
[

1

p̄(S, T )
− 1

]
⇔ 1 + (S − T )ETt [L(S, T )] = ETt

[
p̄(S, S)

p̄(S, T )

]
.

If we define M(t, S, T ) = ETt
[
p̄(S,S)
p̄(S,T )

]
= p̄(t,S)

p̄(t,T )
eF (t,S,T )+G(t,S,T )Zt+

∫ t
0

∫
R K̃(s,y)N( ds, dy) we know

that M(t, S, T ) is a QT - martingale.

p̄(t, T ) = eĀ(t,T )+B̄T (t,T )Zt−
∫ T
t

∑Nt
i=1 Yih(s−τ̃i) ds+C̄(t,T ), (5.61)

or changing variables in the jump term we have

p̄(t, T ) = eĀ(t,T )+B̄T (t,T )Zt+C̄(t,T )+
∫ t
0

∫
R K̃(s,y)N( ds, dy), (5.62)

where K̃(u, y) =
∫ T
u
−Yih(s− τ̃i) ds and C̄(t, T ) = ν(T − t)(D(T − t)− 1).

In order to get the dynamics of p̄(t, T ) under the T -measure we apply Ito’s lemma to
p̄(t, T ) and obtain

dp̄(t, T ) = a(t, T )p̄(t, T ) dt+ p̄(t, T )B̄Tσ dWQ
t + p̄(t, T )

∫
R
eK̃(s,y) − 1 Ñ( ds, dy),
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where

a(t, T ) =
∂Ā

∂t
+
∂B̄

∂t
Zt +

∂C̄

∂t
+ B̄Tα(t, Zt)

+
1

2
B̄Tσ(t, Zt)σ

T (t, Zt)B̄(t, T ) +

∫
R
eK̃(s,y) − 1 ν( dy).

Similar to the proof of Proposition (5.3.2), by Girsanov theorem and remembering
that Ā and B̄ solve the ODE system (5.31)-(5.32) as well as the affine setup for the short
rate and default intensity, we get

dp̄(t, T ) =

(
rt + λt + v̄(t, T )vT (t, T ) +

∂C̄

∂t
(t, T ) +

∫
R
eK̃(s,y) − 1 ν( dy)

)
p̄(t, T ) dt

+p̄(t, T )B̄Tσ dW T
t + p̄(t, T )

∫
R
eK̃(s,y) − 1 Ñ( ds, dy).

We can also deduce the dynamics of a zero-coupon bond with maturity S

dp̄(t, S) =

(
rt + λt + v̄(t, S)vT (t, T ) +

∂C̄

∂t
(t, S) +

∫
R
eK̃(s,y) − 1ν( dy)

)
p̄(t, S) dt

+p̄(t, S)B̄T (t, S)σ dW T
t + p̄(t, S)

∫
R
eK̃(s,y) − 1Ñ( ds, dy).

Applying Ito’s formula to Yt = p̄(t,S)
p̄(t,T )

yields after some calculations

dYt = p̄(t, S) d
1

p̄(t, T )
+

1

p̄(t, T )
dp̄(t, S) + d

[
p̄(t, S),

1

p̄(t, T )

]
= Yt

(
(v̄(t, S)− v̄(t, T ))

(
vT (t, T )− v̄T (t, T )

)
+
∂C̄

∂t
(t, S)− ∂C̄

∂t
(t, T )

)
dt

+ Yt
(
B̄T (t, S)σ − B̄T (t, T )σ

)
dW T

t ,

where v̄(t, T ) = B̄T (t, T )σ(t, Zt).

The dynamics of the following processXt = eF (t,S,T )+G(t,S,T )TZt+
∫ t
0

∫
R K̃(s,y)N( ds, dy) under

QT is given by

dXt = aX(t, T )Xt dt+G(t, S, T )Tσ(t, T )Xt dW T
t +Xt

∫
R
eK̃(s,y) − 1Ñ( ds, dy),

where aX(t, T ) is given by

aX(t, T ) =
∂F

∂t
+
∂G

∂t
z +G(t, S, T )T (d(t) + E(t)z) +G(t, S, T )Tσ(t, T )vT (t, T )

+
1

2
GTσσTG+

∫
R
eK̃(s,y) − 1ν( dy).
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Applying Ito’s formula to Mt = YtXt

dMt = Yt dXt +Xt dYt + d [Yt, Xt]

= aM(t, T )Mt dt+ 2Mt

∫
R
eK̃(s,y) − 1Ñ( ds, dy)

+
(
MtG(t, S, T )Tσ(t, T ) +Mt (v̄(t, S)− v̄(t, T )) +MtG(t, S, T )Tσ(t, T )Xt

)
dW T

t ,

where aM(t, T ) is given by

aM(t, T ) =
∂F

∂t
+
∂G

∂t
z +GT (d(t) + E(t)z) +GTσ(t, T )vT (t, T )

+
1

2
GTσσTG+

∫
R
eK̃(s,y) − 1ν( dy) + (v̄(t, S)− v̄(t, T ))

(
vT (t, T )− v̄T (t, T )

)
+
∂C̄

∂t
(t, S)− ∂C̄

∂t
(t, T ) +GTσ(t, T ) (v̄(t, S)− v̄(t, T )) .

Since Mt is a T− martingale we must have aM(t, T ) = 0.
By separation of variables, we get
∂F
∂t

+
(
B̄T (t, S)− B̄T (t, T )

)
k0(t)

(
B(t, T )− B̄(t, T )

)
+GTd(t) +GTk0(t)B(t, T )

+∂C̄
∂t

(t, S)− ∂C̄
∂t

(t, T ) + 1
2
GTk0(t)G+GTk0(t)(B̄(t, T )− B̄(t, S))

+
∫
R e

K̃(s,y) − 1ν( dy) = 0,
F (T, S, T ) = 0,
∂G
∂t

+
(
B̄T (t, S)− B̄T (t, T )

)∑m
i=1 ki(t)zi

(
B(t, T )− B̄(t, T )

)
+GTE(t)

+GT
∑m

i=1 ki(t)ziB(t, T ) + 1
2
GT
∑m

i=1 ki(t)ziG
+GT

∑m
i=1 ki(t)zi(B̄(t, T )− B̄(t, S)) = 0,

G(t, S, T ) = 0,

Defining G̃ as in (5.34) we get (5.61).
Similarly, as seen in the case whithout the shot-noise process, since

1 + (T − S)ETt [L(S, T )] = M(t, S, T ),

we can solve for ETt [L(S, T )]. Also, since

Frat(S, T ) = ET̄t [L(S, T )] = L(t, S, T ) =
1

T − S

(
p̄(t, S)

p̄(t, T )
− 1

)
,

we can use the definition 5.2.5 and obtain the claimed Convexity adjustment.
In this framework the price of a forward rate agreement taking into account counter-

party credit risk is now given by

Frat(S, T ) = L(t, S, T ) + CCFra(t, S, T ), (5.63)

where L(t, S, T ) = 1
T−S

(
p(t,S)
p(t,T )

− 1
)

is the Libor rate and CCFra(t, S, T ) is given by (5.60).



Chapter 6

Conclusion

In this project thesis we try to model feedback effects using Lévy Processes, therefore
relaxing Black-Scholes’s model assumptions of market liquidity and completeness. The
contribution would be to study option pricing in illiquid markets with jumps and the
associated hedging strategy. The basic idea of this thesis is to extend the models already
used in the literature and extend them using Lévy Processes. We arrive at a partial
integro-differential equation which is nonlinear and where the solution, if it exists, should
be the function representing the derivative’s security price. The objective is to study the
existence and uniqueness of solution of that partial integro-differential equation and then
develop numerical schemes to solve it and study its consistency, stability and convergence.
Also we would like to study the equation when the influence of the large trader is small,
in order to compare it to the already well established classical PIDE.

In this dissertation we showed that if the payoff function and the Lévy process satisfy
some conditions, then we can obtain the option price as a solution of a certain partial
integro-differential equation. Also, if a solution of a certain PIDE is smooth enough
and if the Lévy process satisfies a exponential moment condition, then we can apply the
Feynman-Kač formula for option pricing in a Lévy market. In Chapter 3 we present this
formula for the case of a pure jump process. Two of the possible methods that can be
used to compute the option price numerically are the Fast Fourier technique and the
finite difference method. In this dissertation we present the latter in the form proposed
by Cont and Voltchkova [25].

We could see that the price function of a binary option was not smooth when we used
the Generalized Hyperbolic process. So we can not apply the results of Chapter 3. In this
dissertation we present also a proof for the continuity of an up-and-out and down-and-out
options when the Lévy process is of type A, besides the cases of type B and C presented
in [83] and [26].

We saw different approaches to solve numerically a PIDE. One approach is through
the well known Finite difference implicit-explicit scheme. The other one uses Galerkin
methods through a variational formulation of the PIDE in study, for the finite and infinite
activity cases.

In this thesis we studied an extension of the Black-Scholes model in which the perfect
liquid market assumption is relaxed. Also we take into account the jumps that might
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occur in the stock’s price. So we provide an option pricing formula in an illiquid market
context in which the stock price follows a jump-diffusion model. Also we provide the
associated investor’s strategy. Existence result is proven for a certain integro-differential
equation. A Numerical method based on a finite difference scheme is presented and some
numerical results are given as well as consistency and monotony results for the scheme.

We analyzed existence and uniqueness of solutions to a partial integro-differential
equation (PIDE) in the Bessel potential space. As a model we considered a model for
pricing vanilla call and put options on underlying assets following Lévy stochastic process.
Using the theory of abstract semilinear parabolic equations we proved existence and
uniqueness of solutions in the Bessel potential space representing a fraction power space
of the space of Lebesgue p-integrable functions with respect to the second order Laplace
differential operator. We generalized known existence results for a wide class of Lévy
measures including those having strong singular kernel. We also proved existence and
uniqueness of solutions to the penalized PIDE representing approximation of the linear
complementarity problem arising in pricing American style of options.

In this thesis pricing of Interest rate derivatives is given through Convexity adjust-
ments that are used by practitioners to value non standard products using information
on plain vanilla products.
More concretely, we computed the interbank convexity adjustment of FRAs (Forward
Rate Agreements), combining the classical affine term structure (ATS) framework with
shot-noise process thus being able to capture the counter-party risk of interbank contracts.

As future research it would be interesting to study alternative numerical methods for
PIDEs such as the Analytic method of lines, finite element methods because they allow to
compute the price of American options, unlike the finite difference methods. One of the
reasons to use numerical methods for partial integro-differential equations is that they
are computationally efficient in the case of single-asset options. However, in the case of
three or more assets these methods become inefficient and the most used method to price
American or barrier options is the Monte Carlo method. So it seems that additional study
to overcome these difficulties is needed when we consider three or more assets. Moreover,
extend the results of existence and uniqueness in the framework of Bessel potential spaces.
It seems useful to extend the results presented here to consider the case of transaction
costs. The potential theory could also be an interesting topic for future research because
it explores the deep connection between partial integro-differential operators and Markov
processes with jumps. Another issue that could be interesting to study in the future is
the hedging in incomplete markets. An interesting topic is to measure the effects of the
small perturbation in terms of Black-Scholes implied volatility, i.e the adjusted volatility
parameter that should be used in the Black-Scholes formula to best approximate, for
example in the least squares sense, the price of the option which has to be adjusted due
to the presence of feedback effects. This way we could see if the results support the
observed increased volatility phenomenon.



Appendix A

A.1 Proof of Proposition 3.3.1.

Proof. First, we need to prove the continuity with respect to x.

|f(τ, x+ ∆x)− f(τ, x)| = |E[H(S0e
x+∆x+rτ+Xτ )−H(S0e

x+rτ+Xτ )]|
≤ E[c|S0e

x+∆x+rτ+Xτ )− S0e
x+rτ+Xτ |] = cE[S0e

x+rτ+Xτ |e∆x − 1|]
= cS0e

x+rτE[eXτ ]|e∆x − 1| = cS0e
x+rτ |e∆x − 1|,

because E[eXτ ] = 1 since eXτ is a martingale.

Then,

lim
∆x→0

f(τ, x+ ∆x)− f(τ, x) ≤ lim
∆x→0

cS0e
x+rτ |e∆x − 1| = 0,

which means that f (τ, x) is continuous in x.

Second, we need to prove the continuity in τ .

|f(τ + ∆τ, x)− f(τ, x)| = |E[H(S0e
x+r(τ+∆)τ+Xτ+∆τ )−H(S0e

x+rτ+Xτ )]|
≤ E[c|S0e

x+r(τ+∆)+Xτ+∆)− S0e
x+rτ+Xτ |]

= cS0e
x+rτE[eXτ ]E|er∆τ+X∆τ − 1|.

But

E|er∆τ+X∆τ − 1| =
{

E[er∆τ+X∆τ − 1] if er∆τ+X∆τ − 1 > 0,
E[1− er∆τ+X∆τ ] if er∆τ+X∆τ − 1 < 0

=

{
er∆τ − 1 if er∆τ+X∆τ − 1 > 0,
1− er∆τ if er∆τ+X∆τ − 1 < 0

= er∆τ − 1 + 2

{
E[1− er∆τ+X∆τ ] if 1− er∆τ+X∆τ > 0,

0 if 1− er∆τ+X∆τ < 0

= er∆τ − 1 + 2E[(1− er∆τ+X∆τ )+].

Then, because er∆τ − 1→ 0 when ∆τ → 0, we only have to prove that:

E[(1− er∆τ+X∆τ )+]→ 0, when ∆τ → 0.
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Let C0(R) = {h : h is continuous and vanishing at infinity}. The Feller property tells
us that, for any h ∈ C0(R) we have:

Pτh(0) = E[h(rτ +Xτ )]→ h(0) as τ → 0.

But, in this case h(x) = (1−ex)+ does not belong to C0(R). Then we try to approximate
h with the function g(x) such that:

g(x) = h(x), if x ≥ −1, g(x) = 0, if x ≤ −2, 0 ≤ g(x) ≤ h(x),

and g(x) is continuously interpolated between -2 and -1, that is g(x) = h(−1)x+ 2h(−1)
for −2 ≤ x ≤ −1. This way g ∈ C0(R).

E[(1− er∆τ+X∆τ )+] = |Pτh(0)| = |Pτh(0)− Pτg(0) + Pτg(0)| ≤ |Pτh(0)− Pτg(0)|+ |Pτg(0)|
= |E[(h(r∆τ +X∆τ )− g(r∆τ +X∆τ ))1r∆τ+X∆τ<−1]|+ |Pτg(0)|
≤ E[1r∆τ+X∆τ<−1] + |Pτg(0)| = Q[r∆τ +X∆τ < −1] + |Pτg(0)|
≤ Q[X∆τ ≤ −1] + |Pτg(0)|,

because g = h when r∆τ +X∆τ ≥ −1 and h(x) ≤ 1, g(x) ≥ 0 by construction.
Since |Pτg(0)| → g(0) = 0 as ∆τ → 0, we only have to prove that: Q[X∆τ ≤ −1]→ 0

as ∆τ → 0.
Defining M−

τ = sup0≤s≤τ (−Xs) we have Q[X∆τ ≤ −1] = Q[(−X∆τ ) ≥ 1] ≤ Q[M−
τ ≥

1].
Consider τn ↓ 0 and define Ωn =

{
ω ∈ Ω : M−

τn(ω) ≥ 1
}

. This way, the sequence Ωn

is decreasing. Therefore,

lim
n→∞

Q[Ωn] = lim
n→∞

Q[M−
τn ≥ 1] = Q[

∞⋂
n=1

{
ω ∈ Ω : M−

τn(ω) ≥ 1
}

]

= Q[M−
0 (ω) ≥ 1] = 0,

since M−
0 = −X0 and X0 = 0 a.s . Then Q[M−

τ ≥ 1]→ 0 since τn is arbitrary. Therefore
Q[X∆τ ≤ −1]→ 0.

In order to show continuity for any (τ, x) ∈ [0, T ]×R, we use the triangular inequality:

|f(τ + ∆τ, x+ ∆x)− f(τ, x)| ≤ |f(τ + ∆τ, x+ ∆x)− f(τ + ∆τ, x)|+ |f(τ + ∆τ, x)− f(τ, x)|
≤ cS0e

x+r(τ+∆τ)|e∆x − 1|+ cS0e
x+rτE[|er∆τ+X∆τ − 1|]→ 0.

Then f(τ, x) is continuous on [0, T ]× R.

A.2 Proof of Proposition 3.3.2.

First step: We prove that the density function of rτ +Xτ , pτ (x) ∈ C∞.
The condition

lim
ε→0

inf ε−β
∫ ε

−ε
|x|2ν( dx) > 0
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implies that

∃c1>0

∫ ε

−ε
|x|2ν( dx) ≥ c1ε

β,

for small ε. Following the notation on [83], let pτ (x), be the density function of the Lévy
process rτ +Xτ with characteristic function:

ψrτ+Xτ (z) = eτφr+X1
(z),

with

φr+X1(z) = −σ
2z2

2
+ iγz +

∫ +∞

−∞

(
eizx − 1− izx1|x|≤1

)
ν(dx).

Then,

|ψrτ+Xτ (z)| =
∣∣∣∣eτ(−σ2z2

2
+iγz+

∫+∞
−∞ (eizx−1−izx1|x|≤1)ν(dx)

)∣∣∣∣
=
∣∣∣eτ(i(γz+

∫+∞
−∞ (sin(zx)−zx1|x|≤1)ν(dx))e−

σ2z2

2
+
∫+∞
−∞ (cos(zx)−1)ν(dx))

∣∣∣ ≤ e
∫+∞
−∞ (cos(zx)−1)ν(dx)).

Notice that 1− cos(u) = 1− cos(u
2

+ u
2
) = 1− (cos2(u

2
)− sin2(u

2
)) = 2 sin2(u

2
) ≥ 2(u

π
)2 for

|u|
π
≤ 1. Then,

|ψrτ+Xτ (z)| ≤ e
∫+∞
−∞ (cos(zx)−1)ν(dx)) ≤ e

∫
|x|≤ π

|z|
−2( zx

π
)2ν(dx))

= e
− 2
π2 z

2
∫
|x|≤ π

|z|
x2ν(dx))

= e
−Kz2

∫
|x|≤ π

|z|
x2ν(dx)

.

But
∫ ε
−ε |x|

2ν( dx) ≥ c1ε
β, so by choosing ε = π

|z| , we get −
∫
|x|≤ π

|z|
x2ν(dx) ≤ −C( π|z|)

β.

Then,

|ψrτ+Xτ (z)| ≤ e−Kz
2C( π|z| )

β

= e−c|z|
2−β

= e−c|z|
α

with c = KCπβ and α = 2− β.

Also, ∫
R
|ψrτ+Xτ (z)|zn dz ≤

∫
R
e−c|z|

α

zn dz <∞, (A.1)

and by inversion formula of the Fourier transform,

pτ (x) =
1

2π

∫
R
e−ixzψrτ+Xτ (z) dz.

Then, the right hand-side is n times differentiable with respect to x and differentiation is
possible under the integral sign because of (A.1). In fact,

∂npτ (x)

∂xn
=

1

2π

∫
R
(−iz)ne−izxψrτ+Xτ (z) dz =

1

2π

∫
R
|z|ne( 3

2
nπ−zx)iψrτ+Xτ (z) dz

≤ 1

2π

∫
R
|z|nψrτ+Xτ (z) dz <∞.
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Then, by proposition 28.1 of [72], the process rτ +Xτ has density function pτ (x) of class
C∞.

Second step: Let us prove that f(τ, x) = E[h(x+ rτ +Xτ )] ∈ C∞((0, T )× R).
Defining,p̃τ (x) = pτ (−x), we have

f(τ, x) = E[h(x+ rτ +Xτ )] = h(x) ∗ p̃τ (x) =

∫
R
h(x− z)p̃τ (z) dz

=

∫
R
h(x− z)pτ (−z) dz =

∫
R
h(x+ w)pτ (w) dw,

by making the substitution w = −z.
So we have to show that h(x) ∗ p̃τ (x) belongs to C∞ and for that to happen, ∂np̃τ (x)

∂xn

has to decrease sufficiently fast at the infinity so that

∂nf(τ, x)

∂xn
= h(x) ∗ ∂

np̃τ (x)

∂xn
=

∫
R
h(x− y)

∂np̃τ (y)

∂xn
dy

makes sense.
We have

φ
′

r+X1
(z) = −σ2z + iγ +

∫
R
iy(eiyz − 1|y|≤1)ν( dy),

φ
′′

r+X1
(z) = −σ2 +

∫
R
(iy)2eiyzν( dy),

φ
(k)
r+X1

(z) =

∫
R
(iy)keiyzν( dy),∀k ≥ 3.

Therefore,

|φ′r+X1
(z)| =

∣∣∣∣−σ2z + iγ +

∫
R
iy(eiyz − 1|y|≤1)ν( dy)

∣∣∣∣ ≤ σ2|z|+ |γ|+
∣∣∣∣∫

R
iy(eiyz − 1|y|≤1)ν( dy)

∣∣∣∣
≤ σ2|z|+ |γ|+

∫
R

∣∣iy(eiyz − 1|y|≤1)
∣∣ ν( dy) ≤ σ2|z|+ |γ|+

∫
R
|y||eiyz|ν( dy)

= σ2|z|+ |γ|+
∫
R
|y|ν( dy) = σ2|z|+ |γ|+

∫
|y|≤1

|y|ν( dy) +

∫
|y|>1

|y|ν( dy) <∞,

because of (3.23).

|φ′′r+X1
(z)| =

∣∣∣∣−σ2 +

∫
R
(iy)2eiyzν( dy)

∣∣∣∣ ≤ σ2 +

∣∣∣∣∫
R
(iy)2eiyzν( dy)

∣∣∣∣
≤ σ2 +

∫
R
|(iy)2||eiyz|ν( dy) = σ2 +

∫
R
|y|2ν( dy) <∞,

also by (3.23) and (2.21).

|φ(k)
r+X1

(z)| =
∣∣∣∣∫

R
(iy)keiyzν( dy)

∣∣∣∣ ≤ ∫
R
|(iy)keiyz|ν( dy) =

∫
R
|y|k|eiyz|ν( dy)

=

∫
R
|y|kν( dy) =

∫
|y|≤1

|y|kν( dy) +

∫
|y|>1

|y|kν( dy) <∞,∀k ≥ 3.
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Then φr+X1(z) ∈ C∞ which implies that ψrτ+Xτ (z) = eτφr+X1
(z) ∈ C∞.

Next, we conclude that

|φ′r+X1
(z)| ≤ |σ2|z|+ |γ|+

∫
R
|y|ν( dy)| ≤ A1(1 + |z|),

|φ′′r+X1
(z)| ≤ |σ2 +

∫
R
|y|2ν( dy)| ≤ A2,

|φ(k)
r+X1

(z)| ≤ |
∫
R
|y|kν( dy)| ≤ Ak,∀k ≥ 3,

and also that

|∂ψrτ+Xτ (z)

∂z
| = τ |φ′r+X1

(z)|eτφr+X1
(z) ≤ K(1 + |z|)ψrτ+Xτ (z) ≤ K(1 + |z|)e−c|z|α ,

|∂
2ψrτ+Xτ (z)

∂z2
| =

∣∣∣τφ′′r+X1
(z)eτφr+X1

(z) + τ 2(φ
′

r+X1
(z))2eτφr+X1

(z)
∣∣∣

≤ τA2e
τφr+X1

(z) + τ 2A1(1 + |z|)2eτφr+X1
(z)

≤ τA2e
−c|z|α + τA1(1 + |z|)2e−c|z|

α

≤ K(1 + |z|2)e−c|z|
α

.

So, by recurrence, we get

|∂
kψrτ+Xτ (z)

∂zk
| ≤ K(1 + |z|k)ψrτ+Xτ (z) ≤ K(1 + |z|k)e−c|z|α , ∀k ≥ 0.

Also,

• ∣∣∣∣ dkdzk
∫
R
eizx

∂

∂x
p̃τ (x) dx

∣∣∣∣ =

∣∣∣∣ dkdzk ([eizxp̃τ (x)]∞−∞ −
∫
R
(iz)eizxp̃τ (x) dx)

∣∣∣∣
=

∣∣∣∣ dkdzk (−iz)

∫
R
eizxp̃τ (x) dx

∣∣∣∣ ≤ K|z|1+ke−c|z|
α

.

• ∣∣∣∣ dkdzk
∫
R
eizx

∂2

∂x2
p̃τ (x) dx

∣∣∣∣ =

∣∣∣∣ dkdzk ([eizx
∂

∂x
p̃τ (x)]∞−∞ −

∫
R
(iz)eizx

∂

∂x
p̃τ (x) dx)

∣∣∣∣
= | d

k

dzk
([eizx

∂

∂x
p̃τ (x)]∞−∞ + [(−iz)eizxp̃τ (x)]∞−∞

−
∫
R
(iz)2eizxp̃τ (x) dx)| =

∣∣∣∣ dkdzk (−iz)2

∫
R
eizxp̃τ (x) dx

∣∣∣∣
≤ K|z|2+ke−c|z|

α

,∀k ≥ 0,

because by proposition 28.1 of [72] the partial derivatives of p̃τ of orders 0,..,n tend
to zero as |x| → ∞. Once again by recurrence,
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• ∣∣∣∣ dkdzk
∫
R
eizx

∂n

∂xn
p̃τ (x) dx

∣∣∣∣ =

∣∣∣∣ dkdzk (−iz)n
∫
R
eizxp̃τ (x) dx

∣∣∣∣ ≤ K|z|n+ke−c|z|
α

,

for all n, k ≥ 0 .

Then,

∀k, n ≥ 0,

∫
R

(
dk

dzk

∫
R
eizx

∂n

∂xn
p̃τ (x) dx

)2

dz ≤
∫
R

(
K|z|n+ke−c|z|

α)2
dz <∞,

which means that dk

dzk

∫
R e

izx ∂n

∂xn
p̃τ (x) dx ∈ L2(R). But this implies that∫
R

(
|x|k ∂

n

∂xn
p̃τ (x)

)2

dx <∞

or that |x|k ∂n

∂xn
p̃τ (x) ∈ L2(R), and this in turn implies that:∫

R
|∂

np̃τ (x)

∂xn
(1 + |x|k) dx| ≤ C

∫
R

1

1 + |x|
(1 + |x|k+1)

∂np̃τ (x)

∂xn
dx

≤ C

(∫
R

(
1

1 + |x|

)2

dx

)1/2(∫
R

(( 1 + |x|k+1

)
∂np̃τ (x)

∂xn

)2

dx

)1/2

= C

∥∥∥∥ 1

1 + |x|

∥∥∥∥
L2

∥∥∥∥(1 + |x|k+1)
∂np̃τ (x)

∂xn

∥∥∥∥
L2

<∞.

Then,∣∣∣∣∂nf∂xn
(τ, x)

∣∣∣∣ =

∣∣∣∣h(x) ∗ ∂
np̃τ (x)

∂xn

∣∣∣∣ =

∣∣∣∣∫
R
h(x− z)

∂np̃τ (z)

∂xn
dz

∣∣∣∣
≤ C

∫
R
(1 + |x− z|p)

∣∣∣∣∂np̃τ (z)

∂xn

∣∣∣∣ dz ≤ C(1 + |x|p)
∫
R
(1 + |z|p)

∣∣∣∣∂np̃τ (z)

∂xn

∣∣∣∣ dz

≤ C(1 + |x|p)K
∥∥∥∥ 1

1 + |x|

∥∥∥∥
L2

∥∥∥∥(1 + |x|k+1)
∂np̃τ (x)

∂xn

∥∥∥∥
L2

= D(1 + |x|p).

Then ∂nf
∂xn

(τ, x) is continuous and finite, which means that f is regular with respect to
x. To prove the regularity in time we notice that:

|φr+X1(z)| =
∣∣∣∣−σ2z2

2
+ iγz +

∫ +∞

−∞
(eizx − 1− izx1|x|≤1)ν(dx)

∣∣∣∣ ≤ C(1 + |z|2)

and verify by recurrence that∣∣∣∣ dkdzk
∫
R
eizx

∂m

∂τm
p̃τ (x) dx

∣∣∣∣ =

∣∣∣∣ dkdzk ∂m∂τm
∫
R
eizxp̃τ (x) dx

∣∣∣∣
=

∣∣∣∣ dkdzk [φr+X1(z)]meτφr+X1
(z)

∣∣∣∣ ≤ C|z|2m+ke−c|z|
α

.
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Then, dk

dzk

∫
R e

izx ∂m

∂τm
p̃τ (x) dx ∈ L2(R) , which implies that ∂mp̃τ (x)

∂τm
(1 + |x|k) ∈ L1(R).

Therefore,

∣∣∣∣∂mf∂τm
(τ, x)

∣∣∣∣ =

∣∣∣∣h(x) ∗ ∂
mp̃τ (x)

∂τm

∣∣∣∣ =

∣∣∣∣∫
R
h(x− z)

∂mp̃τ (z)

∂τm
dz

∣∣∣∣ ≤ C

∫
R
(1 + |x− z|p)

∣∣∣∣∂mp̃τ (z)

∂τm

∣∣∣∣ dz

≤ C(1 + |x|p)
∫
R
(1 + |z|p)

∣∣∣∣∂mp̃τ (z)

∂τm

∣∣∣∣ dz

≤ C(1 + |x|p)K
∥∥∥∥ 1

1 + |x|

∥∥∥∥
L2

∥∥∥∥(1 + |x|k+1)
∂mp̃τ (x)

∂τm

∥∥∥∥
L2

= D(1 + |x|p),

which means that ∂nf
∂τm

(τ, x) is continuous and finite.

In the same way we conclude that:

∣∣∣∣ dkdzk
∫
R
eizx

∂n+m

∂xn∂τm
p̃τ (x) dx

∣∣∣∣ =

∣∣∣∣ dkdzk (−iz)n[φr+X1(z)]meτφr+X1
(z)

∫
R
eizxp̃τ (x) dx

∣∣∣∣
≤ C|z|2m+n+ke−c|z|

α

.∣∣∣∣ ∂n+mf

∂xn∂τm
(τ, x)

∣∣∣∣ =

∣∣∣∣h(x) ∗ ∂
n+mp̃τ (x)

∂xn∂τm

∣∣∣∣ =

∣∣∣∣∫
R
h(x− z)

∂n+mp̃τ (z)

∂xn∂τm
dz

∣∣∣∣
≤ C

∫
R
(1 + |x− z|p)

∣∣∣∣∂n+mp̃τ (z)

∂xn∂τm

∣∣∣∣ dz

≤ C(1 + |x|p)
∫
R
(1 + |z|p)

∣∣∣∣∂n+mp̃τ (z)

∂xn∂τm

∣∣∣∣ dz

≤ C(1 + |x|p)K
∥∥∥∥ 1

1 + |x|

∥∥∥∥
L2

∥∥∥∥(1 + |x|k+1)
∂n+mp̃τ (x)

∂xn∂τm

∥∥∥∥
L2

= D(1 + |x|p).

Then f(τ, x) ∈ C∞((0, T ],R).

A.3 Proof of Proposition 3.3.5.

Proof. Define M = supS∈(0,U)H(S). We can do this because H is bounded due to the
fact that it is Lipschitz. We will prove first the continuity in x and τ and finally prove
the continuity using the triangular inequality.

First step: Prove continuity in x for all τ > 0 and x < u. Choosing δ ∈ (0, u− x) we
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get:

|fU(τ, x+ δ)− fU(τ, x)| = |E[H(S0e
x+δ+Yτ )1τ<Ru−x−δ −H(S0e

x+Yτ )1τ<Ru−x ]|
≤ E[|H(S0e

x+δ+Yτ )1τ<Ru−x−δ −H(S0e
x+Yτ )1τ<Ru−x|]

= E[|(H(S0e
x+δ+Yτ )−H(S0e

x+Yτ ))1τ<Ru−x−δ
+H(S0e

x+Yτ )(1τ<Ru−x−δ − 1τ<Ru−x)|]
≤ E[k|(S0e

x+δ+Yτ − S0e
x+Yτ )|1τ<Ru−x−δ ] +ME[1Ru−x−δ<τ<Ru−x ]

≤ kex+rτE[S0e
Xτ ]|eδ − 1|+MQ[Ru−x−δ < τ < Ru−x]

≤ kS0e
x+rτ |eδ − 1|+MQ[Ru−x−δ < τ < Ru−x],

because by the martingale condition E[eXτ ] = E[eX0 ] = 1.
Then,

lim
δ→0
|fU(τ, x+ δ)− fU((τ, x))| ≤ lim

δ→0
kS0e

x+rτ |eδ − 1|+MQ[Ru−x−δ < τ < Ru−x] = 0,

because |eδ − 1| → 0 and Q[Ru−x−δ < τ < Ru−x]→ 0 when δ → 0 by Lemma 3.3.5.
Similarly we prove for x < u :

lim
δ→0
|fU(τ, x− δ)− fU((τ, x))| ≤ lim

δ→0
kS0e

x+rτ |e−δ − 1|+MQ[Ru−x < τ < Ru−x+δ] = 0,

also by Lemma 3.3.5 and by the martingale condition.
As for x = u the right continuity of fU(τ, x) is proven easily so:

|fU(τ, u− δ)− fU((τ, u))| = |E[H(S0e
u−δ+Yτ )1τ<Rδ ]| ≤MQ[τ < Rδ].

Considering δn → 0 we have:

Q[τ < Rδ]→ Q[∩∞n=1 {ω ∈ Ω|Rδn > τ}] = Q[τ ≤ R0] = 0,

because R0 = 0 a.s. Therefore, we proved the continuity of fU(τ, x) for all x ∈ R.
Second step: Let us prove continuity in time. For x < u and 0 ≤ s ≤ t :

|fU(t, x)− fU(s, x)| = |E[H(S0e
x+Yt)1t<Ru−x −H(S0e

x+Ys)1s<Ru−x ]|
≤ E[|H(S0e

x+Yt)−H(S0e
x+Ys)|1t<Ru−x + |H(S0e

x+Ys)|1s≤Ru−x < t]

≤ kS0e
x+rsE[|eYt−s − 1|] +MQ[s ≤ Ru−x < t].

lim
t→s
|fU(t, x)− fU(s, x)| ≤ lim

t→s
kS0e

x+rsE[|eYt−s − 1|] +MQ[s ≤ Ru−x < t] = 0,

because we know that, by the proof of the Proposition 3.3.1, E[|eYt−s − 1|] → 0 when
t→ s and considering a decreasing set Ωn = {ω ∈ Ω|s ≤ Ru−x(ω) < tn}, tn → s:

lim
n→∞

Q[s ≤ Ru−x(ω) < tn] = Q[∩∞n=1Ωn] = Q[∅] = 0.

Third step: Use the triangular inequality. Let (τ, x) ∈ [0, T ]×(−∞, u) and (∆τ,∆x) ∈
R2

|fU(τ + ∆τ, x+ ∆x)− fU(τ, x)| ≤ |fU(τ + ∆τ, x+ ∆x)− fU(τ, x+ ∆x)|
+ |fU(τ, x+ ∆x)− fU(τ, x)|.
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• First term.

Defining y = x+ ∆x and t = τ + ∆τ with ∆τ > 0, we obtain:

|fU(t, y)− fU(τ, y)| = |E[H(S0e
y+Yt)1t<Ru−y −H(S0e

y+Yτ )1τ<Ru−y ]|
= |E[(H(S0e

y+Yt)−H(S0e
y+Yτ ))1t<Ru−y

+H(S0e
y+Yτ )(1t<Ru−y − 1τ<Ru−y)]|

≤ E[|H(S0e
y+Yt)−H(S0e

y+Yτ )|1t<Ru−y + |H(S0e
y+Yτ )|1τ<Ru−y<t]

≤ kE[|S0e
y+Yt − S0e

y+Yτ |1t<Ru−y ] +MQ[τ < Ru−y < t]

≤ kS0e
yE[|eYt − eYτ |] +MQ[τ < Ru−y < t] but Yt − Yτ

d
= Y∆τ

≤ kS0e
yE[|eYτ |eY∆τ − 1|] +MQ[τ < Ru−y < t]

= kS0e
yE[eYτ ]E[|eY∆τ − 1|] +MQ[τ < Ru−y < t]

= kS0e
y+rτE[|eY∆τ − 1|] +MQ[τ < Ru−y < t].

Similarly for the case ∆τ < 0, we get:

|fU(t, y)− fU(τ, y)| = |fU(τ, y)− fU(t, y)|
= |E[H(S0e

y+Yτ )1τ<Ru−y −H(S0e
y+Yt)1t<Ru−y ]|

= |E[(H(S0e
y+Yτ )−H(S0e

y+Yt))1τ<Ru−y
+H(S0e

y+Yt)(1τ<Ru−y − 1t<Ru−y)]|
≤ E[|H(S0e

y+Yτ )−H(S0e
y+Yt)|1τ<Ru−y + |H(S0e

y+Yt)|1t<Ru−y<τ ]
≤ kE[|S0e

y+Yτ − S0e
y+Yt|1τ<Ru−y ] +MQ[t < Ru−y < τ ]

≤ kS0e
yE[|eYτ − eYt|] +MQ[t < Ru−y < τ ] but , Yτ

d
= Yτ+∆τ − Y∆τ

≤ kS0e
yE[|eYt |e−Y∆τ − 1|] +MQ[t < Ru−y < τ ]

= kS0e
yE[eYτ ]E[|eY−∆τ − 1|] +MQ[t < Ru−y < τ ]

= kS0e
y+rτ+∆τE[|eY−∆τ − 1|] +MQ[t < Ru−y < τ ].

So for ∆x ∈ R,

|fU(t, y)− fU(τ, y)|
≤ kS0e

y(erτ1∆τ≥0 + ert1∆τ<0)E[|eY|∆τ | − 1|] +M(Q[τ < Ru−y ≤ t]1∆τ≥0

+ Q[t < Ru−y ≤ τ ]1∆τ<0)

= kS0e
y+rτ (1∆τ≥0 + er∆τ1∆τ<0)E[|eY|∆τ | − 1|] +M(Q[t < Ru−y ≤ τ ]1∆τ<0

+ Q[τ < Ru−y ≤ t]1∆τ≥0)

≤ kS0e
y+rτE[|eY|∆τ | − 1|] +M(Q[t < Ru−y ≤ τ ]1∆τ<0

+ Q[τ < Ru−y ≤ t]1∆τ≥0)

= kS0e
y+rτE[|eY|∆τ | − 1|] +M(Q[∆τ < Ru−y − τ ≤ 0]1∆τ<0

+ Q[0 < Ru−y − τ ≤ ∆τ ]1∆τ≥0)]

= kS0e
y+rτE[|eY|∆τ | − 1|] +M(Q[−∆τ < Ru−y − τ ≤ 0]

+ Q[0 < Ru−y − τ ≤ ∆τ ])1∆τ≥0

≤ kS0e
y+rτE[|eY|∆τ | − 1|] +MQ[|Ru−y − τ | ≤ ∆τ ].
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We would like to apply Lemma 3.3.5, but we can’t, because we still have a bound
that depends on ∆τ and ∆x. However, note that ∀ε>0, ∀∆x− ε ≤ ∆x ≤ ε, Ru−x−ε ≤
Ru−x−∆x ≤ Ru−x+ε.

Then,

lim
∆τ,∆x)→0

Q[|Ru−y − τ | ≤ ∆τ ] ≤ lim
(∆τ,∆x)→0

(Q[|Ru−x−ε − τ | ≤ ∆τ ] + Q[|Ru−x+ε − τ | ≤ ∆τ ]

+Q[Ru−x−ε ≤ τ ≤ Ru−x+ε])

= Q[Ru−x−ε = τ ] + Q[Ru−x+ε = τ ]

+ Q[Ru−x−ε ≤ τ ≤ Ru−x+ε]

= Q[Ru−x−ε ≤ τ ≤ Ru−x+ε]

after Lemma 3.3.4.

• Second term

|fU(τ, y)− fU(τ, x)| = |E[H(S0e
y+Yτ )1τ<Ru−y −H(S0e

x+Yτ )1τ<Ru−x ]|
≤ kS0e

x+rτ |e∆x − 1|+M(Q[Ru−y ≤ τ < Ru−x]1∆x≥0

+ Q[Ru−x ≤ τ < Ru−y]1∆x<0)

As already demonstrated, this expression tends to zero when ∆x→ 0.

Then,

lim
(∆τ,∆x)→0

|fU(τ + ∆τ, x+ ∆x)− fU(τ, x)| ≤ lim
(∆τ,∆x)→0

(MQ[Ru−x−ε ≤ τ ≤ Ru−x+ε]

+ kS0e
x+rτ |e∆x − 1|

+M(Q[Ru−y ≤ τ < Ru−x]1∆x≥0

+ Q[Ru−x ≤ τ < Ru−y]1∆x<0))

= MQ[Ru−y−ε ≤ τ ≤ Ru−y+ε].

So it remains to prove that when ε→ 0, which implies ∆x→ 0, that

Q[Ru−x−ε ≤ τ ≤ Ru−x+ε]→ 0.

But once again taking εn → 0 and if

An = {ω ∈ Ω|Ru−x−εn ≤ τ ≤ Ru−x+εn} ,

then

lim
n=∞

Q[Ru−x−εn ≤ τ ≤ Ru−x+εn ] = Q[∩∞n=1An] = Q[Ru−x = τ ] = 0,

after Lemma 3.3.4.
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Fourth Step: Let us show the continuity in x = u.

|fU(τ + ∆τ, u+ ∆x)− fU(τ, u)| = |fU(τ + ∆τ, u+ ∆x)1∆x<0|
= |E[H(S0e

u+∆x+Yτ+∆τ )1τ+∆τ<R−∆x
1∆x<0|

≤MQ[τ + ∆τ < R−∆x]1∆x<0 = MQ[τ + ∆τ < R|∆x|].

But, for all ξ > 0 such that |∆τ | ≤ ξ, implies:{
ω ∈ Ω|τ + ∆τ < R|∆x|

}
⊂
{
ω ∈ Ω|τ − ξ < R|∆x|

}
,

which in turn implies:

Q[τ + ∆τ < R|∆x|] ≤ Q[τ − ξ < R|∆x|]→ 0,

when ∆x→ 0 , because it only depends on ∆x.
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put and pasting principles. The Annals of Applied Probability, 15(3):2062–2080, 2005.

[4] Ariel Almendral and Cornelis W. Oosterlee. On American options under the Variance Gamma
process. Applied Mathematical Finance, 14(2):131–152, 2007.

[5] Olivier Alvarez and Agnès Tourin. Viscosity solutions of nonlinear integro-differential equations.
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lévy models. Preprint, 2006.

[85] Song Wang. An interior penalty method for a large-scale finite-dimensional nonlinear double obstacle
problem. Applied Mathematical Modelling, 58:217–228, 2017.

[86] Song Wang, X. Q Yang, and K. L. Teo. Power penalty method for a linear complementarity
problem arising from American option valuation. Journal of Optimization Theory and Applications,
129(2):227–254, 2006.

[87] Shin Kim Young, Fabozzi Frank J., Lin Zuodong, and Rachev Svetlozar T. Option pricing and
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